你刷著科技資訊,突然又看到那句老調重彈的斷言:“AI 將在 2026 年取代所有開發者。”可就在這時,OpenAI 聯合創始人 Andrej Karpathy 和亞馬遜、Google老將 Steve Yegge 卻給出了完全不同的預測。他們的觀點,直接顛覆了這種說法。
他們的看法?大家都想反了。
我這幾個月一直在密切使用 AI 程式設計工具,當這兩位大佬不約而同得出同樣的結論時,我就知道這事得好好琢磨一下。他們的觀點不僅和那些“末日論”截然不同,甚至可以說是完全相反。
他們是誰?為什麼值得你關注
Karpathy 可不是那種只會炒作 AI 的人。他是 OpenAI 的創始成員,曾任特斯拉 AI 總監,親手搭建了如今大家爭論不休的那些 AI 系統。AI 的侷限在那,他比誰都清楚。
Yegge 則是在亞馬遜和Google負責過核心基礎設施的老兵,那時候“規模”這個詞的含義和現在完全不同。如今他在 Sourcegraph,直接和企業團隊合作,把 AI 真正落地到生產環境裡——不是做演示,而是要讓程式碼真正在現實中跑起來。
當這兩位都看著 AI 程式設計的熱潮說“開發者不會消失”,我會認真聽。
我突然明白了:這根本不是“取代”,而是“新一層抽象”。
想想看,現在還有多少開發者寫彙編?幾乎沒有。高級語言出現後,程式設計師的飯碗沒丟,反而行業爆發式增長——因為大家能更快地做出更複雜的東西。
Karpathy 和 Yegge 都認為,這個歷史正在重演。用 Yegge 的話說:“企業級軟體開發永遠都極其複雜,所以工程師和 AI 會聯手一起搞定它。”
關鍵詞就是“聯手”,不是“AI 接管”,而是“協作”。
給你舉個實際例子。Karpathy 發明了一個詞叫“vibe coding”(氛圍程式設計),非常貼切地描述了現在的變化:
“現在有一種新型程式設計方式,我叫它‘vibe coding’,你完全順著感覺走,擁抱指數級提升,甚至忘了程式碼本身的存在。”
聽起來挺嚇人?其實操作很簡單。
Karpathy 做周末項目時,幾乎不碰鍵盤,直接和 Cursor Composer 對話:“把側邊欄的內邊距減半。”AI 就幫他改好了。看著沒問題,他就繼續。再也不用翻 CSS 檔案、偵錯邊距。
遇到報錯,他直接把錯誤資訊貼上給 AI,什麼都不說。“通常就能搞定。”
關鍵在於:這種方式是可以根據項目重要性靈活調整的。
隨便玩玩的周末小項目?全程交給 AI,自己只管氛圍。
企業級生產系統?就得像 Yegge 說的那樣用“監督式 AI”——AI 負責體力活,你全程把關、稽核。
同樣的工具,具體怎麼用,取決於你在做什麼,人工介入的深淺也隨之變化。
Yegge 一直密切關注著這場變革。他大約一年前提出了“對話式程式設計”這個概念——也就是通過與 AI 對話來寫程式碼,而不是依賴自動補全。
但現在呢?“對話式程式設計還算主流,但智能體程式設計已經以指數級的速度超越了這種方式,效果遠勝以往。”
所謂智能體程式設計,就是讓 AI 能夠獨立完成整個工作流程,你只需在旁邊觀看。與其說“幫我寫個函數”,不如直接讓 AI “為這個應用建構使用者登錄功能,包括密碼重設”。
這場進步的速度令人咋舌。從自動補全到對話,再到自主智能體,前後不過一年半。
Karpathy 把這個過程分為三個清晰的階段:
第一代:你寫出詳細的指令。比如要排序資料,就得手寫排序演算法。
第二代:你給出示例,電腦通過學習樣本找出規律。比如要做圖片分類,就用成千上萬張帶標籤的照片訓練神經網路。
第三代:你用英語描述需求。比如要使用者認證,只需說“建立一個帶密碼重設功能的安全登錄系統”。
他的核心觀點是:“大語言模型(LLM)是一種全新的電腦,而你用英語來程式設計。”
這不僅僅是工具的升級,而是讓任何能清楚表達想法的人都能參與程式設計。產品經理可以自己做原型,設計師也能無需等工程師就搭建互動演示。
這不會取代開發者——而是讓所有人的能力成倍提升。
一個鮮有人提及的問題:參差不齊的智能
但我對此也有保留,Karpathy 的坦率讓人耳目一新。
AI 存在所謂的“參差智能”——它能解決極其複雜的問題,卻也會在簡單問題上犯低級錯誤。AI 可能能完美實現複雜演算法,卻又信誓旦旦地告訴你 9.11 比 9.9 大。
“目前,這一點尤其值得注意,特別是在生產環境中。要用 LLM 做它擅長的事,但要警惕那些‘參差邊界’,並始終讓人類參與把關。”
這也是 “AI 會取代所有開發者”這種說法站不住腳的原因。AI 有時極其聰明,有時又愚蠢得不可思議,且難以預測。生產系統無法承受這種不穩定,必須有人類監督。
有一點你必須重視:“有些公司已經裁掉了 30% 不願意用 AI 的工程師。”
不是將來,而是已經發生。
“有錢的公司可以直接投入,但其他公司就要做艱難選擇——要麼承擔成本、要麼被競爭對手甩開、要麼裁員來彌補新開支。”
換句話說,如果一個用 AI 工具的開發者能頂仨人幹活,你覺得那兩個會被裁掉?
這不是理論,我現在就在現實公司裡看到這種情況。會用這些工具的開發者變得極其搶手,而忽視 AI 的人正在被淘汰。
真正重要的能力,並不是死記硬背新 API,或者學點提示詞工程的小技巧。更高階的能力其實有以下幾種:
有趣的是,這些本質上都是人的能力,和 AI 協作後會被放大,而不是被取代。
Karpathy 對“ 2025 年 AGI 就要來了”這種說法潑了盆冷水:“每當我看到‘2025 是智能體元年’這種說法,我都很擔心,其實我覺得這應該是‘智能體的十年’。”
十年,不是一年。
“可惜的是,華爾街並不懂得耐心,所以 AI 的炒作還會繼續喧囂下去,而真正的從業者還在摸索如何開啟新的計算時代。”
但現在已經有些現實成果你可以用上:像 GitHub Copilot、Cursor 這樣的工具,已經讓開發者在日常任務上提速 30% 到 50%。這不是理論上的提升,而是你今天就能看到的實際效果。
這場變革來得不算太快,你有時間適應;但也不算慢,現在就該開始行動。
說實話,我一開始也很懷疑。“AI 讓程式設計大眾化”這種說法,聽起來就像矽谷的老套忽悠。但真正用這些工具做了幾個項目後,我突然明白了。
每一次程式設計範式的變遷,都是類似的軌跡:從彙編到 C,從 C 到 Python,從命令列到圖形介面。每次大家都擔心門檻降低會讓行業變弱,但每次結果都是行業變大、變有創造力。
那些最終脫穎而出的開發者,從來不是死守舊工具的人,而是善於用新工具做出以前做不到的東西的人。
這次的變化更大。我們不只是換了種語法,而是獲得了一種全新的問題解決方式——更重視清晰表達,少了死記 API 的負擔。
正如 Yegge 所說:“電腦科學教育確實需要進化,但基礎依然重要。當年彙編被高級語言取代時,大家擔心程式設計能力會退化,結果反而行業擴張、崗位增加。”
現在最吃香的開發者,不是那些精通 React hooks 或 Kubernetes 配置的人,而是能清楚表達自己想法,並能引導 AI 正確實現的人。
別再光看資料了,趕緊上手試試吧。挑一個 AI 程式設計工具用起來——如果你想要穩定一點的體驗,就選 GitHub Copilot;如果你想嘗鮮最新功能,那就試試 Cursor。
先從一個無關緊要的小項目開始,做點有趣又無壓力的東西,比如隨機語錄生成器、簡單的待辦事項應用之類的。這種項目對程式碼完美與否沒什麼要求,放手去做就好。
別想著一口氣徹底革新你的整個開發流程。先在這些低風險的小項目裡,適應一下人與 AI 協作的節奏。
那些已經在 AI 時代如魚得水的開發者,從來不是等到工具完善、教學齊全才開始的。他們都是邊試邊錯,邊做邊學。
Karpathy 和 Yegge 都明白一件事,而那些“AI 取代人類”的說法卻忽略了:這項技術是放大人類智慧,而不是取而代之。
我們不會被淘汰,我們會變成指揮者。AI 不是來搶我們的飯碗,而是讓我們和它配合,去解決單靠自己搞不定的大難題。
未來屬於那些能站在更高層次思考、善於溝通、懂得如何指揮 AI 解決複雜問題的開發者。如果你已經走到今天這一步,其實你已經具備了大部分所需的能力。
你只需要開始學會和 AI “共舞”。說真的,這支舞一旦跳順了,還挺有意思的。
革命不是即將到來,而是已經發生。問題只在於,你是要參與塑造它,還是被它塑造。 (大模型技術共學營)