字節徹底爆發了?

一路高歌猛進的字節跳動,正式殺入作業系統,重新定義 AI 手機時代。

12 月 1 日,字節跳動發佈豆包手機助手預覽版——這款與手機廠商在作業系統層面合作的 AI 助手,可根據使用者指令在多款應用間自動跳轉,既能實現查票訂票、批次下載檔案、多軟體物流進度一鍵查詢等效率型功能,也能完成相簿修圖、外賣比價、商品下單等生活服務類操作。

其開創意義在於:真正從作業系統層面,讓 AI 從被動問答升級為主動完成真實場景的智能調度與跨應用任務。

受此消息帶動,合作廠商中興通訊 A 股漲停、港股大漲超 13%,直觀反映出市場對 AI Agent 落地的強烈期待。

而從行業宏觀視角來看,過去 6 個月 AI 產業的迭代速度遠超去年,正站在技術周期的關鍵拐點,模態融合成為核心趨勢——去年,以單模態為主,VLM 等視覺理解模型佔比偏低,LLM(大語言模型)是絕對主流;今年,多模態呼叫量佔比持續攀升,生圖、生視訊能力增長迅猛——尤其下半年以來,模型的“Function Call”請求量爆發式增長,標誌著 Agent 能力已成為市場核心需求。

這也解釋了火山引擎、騰訊雲今年為何腳步輕盈、姿態昂揚——國內使用者基數大、高頻剛需場景豐富、帳戶體系關聯緊密的應用,微信與抖音是 T0 梯隊兩大翹楚。

與此同時,AI 熱浪持續炙烤著大眾的神經,如火如荼的“軍備競賽”也將網際網路寡頭捲入了一場無限戰爭——在此背景下,權威榜單一度成為公眾感知大廠在 AI 領域行軍速度的“風向標”。

上周,Gartner 發佈 2025 年度全球《AI 應用開發平台魔力象限》,該報告基於“落地能力”(Ability to Excute)與“戰略完整性”(Completeness of Vision)兩大維度,對全球頭部 AI 應用開發平台展開全面評估,榜單結果卻引發行業熱議——首次沖榜的火山引擎,“落地能力”超過阿里雲、騰訊雲躍居中國第一,多模態關鍵能力綜合得分躋身全球第四,著實令人刮目相看。

圖源:火山引擎官網

虎嗅注,榜單橫軸 Completeness of Vision 核心衡量平台的戰略格局、技術路線、生態覆蓋與發展潛力;縱軸 Ability to Execute 重點反映平台的商業化落地成效、客戶規模與營收體量。

需說明的是,火山引擎因在生態開放性、全球市場佈局上存在短板,未進入“領導者”象限;而在 Gartner《生成式 AI(GenAI)技術創新指南》中,阿里雲成為亞太地區唯一入選“領導者”象限的雲廠商。

通過與大模型創業者、第三方機構及火山引擎研發人員的深度溝通,虎嗅發現:AI 技術的高速迭代正重構行業認知,許多推倒重建正悄然發生。本文將以 Gartner 榜單為切入點,復盤國內 AI 雲競爭格局變化與行業趨勢演進。

火山何來攻擂的底氣?

一切爭議由 Gartner 榜單而起,卻也成為外界審視 AI 雲服務發展的重要切口。

首先,Gartner 評選並非“野雞榜單”,而是行業公認的權威標竿。與國內部分評測機構不同,其評選面向全球 AI 從業者及學者發放匿名問卷、追蹤企業客戶真實應用反饋、組建專業團隊實測產品性能,最終通過多維度資料交叉驗證得出結果——全程不受廠商干預,在全球 IT 領域報告中具備權威性。

其次,這是 Gartner 首次針對全球大模型 AI 應用開發平台開展專項評估。虎嗅瞭解到,這一決策主要基於兩層考量:

  • 一是 AI 應用已在全球形成規模化市場,並開始分化——這一結論與產業發展走向高度契合:大模型風起雲湧,前兩年聚集於訓練環節的雲端運算算力,在 2024-2025 年逐步向推理環節轉移,大量競爭力不足的大模型團隊出局,AI 應用時代呼嘯而來;
  • 二是 AI 應用開發平台提供標準化工具集,企業開發者無需深厚的機器學習知識,即可快速搭建 AI 助手、Agent 及多模態應用,降低了 AI 落地的技術門檻。

究其本質,大模型時代的 AI 應用開發是全新技術範式,核心競爭力聚焦三點:模型智能度、響應速度、成本控制——這三大因素直接決定 AI 應用的使用者普及度與使用體驗,也成為 AI 雲廠商競爭的“新賽點”。

在大模型興起之前的 IaaS(算力基礎設施)時代,阿里雲一家獨大,騰訊雲亦領先火山引擎一個身位。

阿里雲憑藉全端自研能力與先發優勢,是 IaaS 領域的“老大哥”,市場份額為第二名的兩倍以上;尤其,“飛天 + CIPU + 倚天”的技術組合,形成強大競爭壁壘——服務超千家大型政企客戶,覆蓋 500 萬全球使用者。

騰訊雲則聚焦遊戲、音視訊,在中小企業市場多年深耕,雲遊戲接入覆蓋規模、遊戲資源下載分發規模等細分賽道位列第一;隨後通過企業微信生態與“同源同構”技術形成獨特客戶粘性,走出了差異化競爭路線。

但隨著行業進入 MaaS(模型即服務)時代,競爭底層邏輯從資源售賣轉向模型能力,這為火山引擎創造了彎道超車的機會。尤其今年,國內三大雲廠商的模型進展形成鮮明對比:

阿里推出 Qwen3-Next,同時開源 80B-A3B 系列模型;再加上通義萬相(視覺模型)、通義靈碼(程式設計模型),其全模態能力覆蓋文字、圖像、視訊、語音、程式碼生成;截至 2025 年 10 月 31 日,Hugging Face 上基於 Qwen 家族開發的衍生模型數量已超 18 萬個,超過第二名的兩倍。

騰訊相繼推出混元 Large、混元 Turbos、混元 T1 及多個面向端側場景的小尺寸模型;文生圖模型 Hunyuan Image 3.0 在 10 月沖上 LMArena 榜單第一名;混元 3D 在國內外口碑出圈,國內服務超 150 家企業,在遊戲、3D 列印等領域商業化進展迅速。

火山引擎發佈 Doubao-Seed-1.6,首次實現自適應思考、多模態理解與圖形介面操作的深度融合,成為國內首個支援 256K 上下文的思考型模型;同期,豆包視訊生成模型 Seedance 1.0 pro 在 Artificial Analysis 的文生視訊與圖生視訊兩大核心能力評測中登頂全球第一。

三家模型發力側重點不盡相同,但火山引擎的模型優勢主要體現在技術融合與場景落地上:其通過視覺理解與推理能力的深度融合,落地為豆包 APP 的拍題、解題功能——底層邏輯是模型基於視覺資訊的原生思考,而非先通過圖像識別模型解析題目、再通過語言模型生成答案的拆分式方案。

暴露火山野心的動作還在於:當前多數開發者需繫結單一模型,但不同模型往往存在 “能力短板”(即模型偏科現象)。以教育場景為例,豆包大模型在數學、英語科目表現突出,但在人文領域仍有提升空間。為此,火山引擎於 10 月推出 Model Router 智能模型路由:將豆包大模型與第三方開源模型整合至同一平台,使用者無需繫結單一模型,系統可在規則約束下自動匹配效果最優或成本最低的模型方案。

這意外打通了火山方舟的“任督二脈”,除自研豆包大模型外,其他開源模型的呼叫量也顯著增長,佔整體呼叫量的比例已攀升至低雙位數區間。

行業內流傳的說法是,DeepSeek 大模型公有雲呼叫服務這波紅利基本形成“火山引擎吃肉,其他人喝湯”的格局——據火山引擎披露,其大模型服務已覆蓋八成頭部咖啡茶飲品牌、九成主流汽車品牌、八成頭部券商、八成系統重要性銀行、七成 985 高校,以及 9 家全球出貨量前十的手機廠商。

除模型能力外,工程化能力也是火山引擎沖榜的關鍵支撐。

行業普遍認為,MaaS 平台的 Token 定價與工程化能力直接掛鉤:DeepSeek 創始人梁文鋒曾提及,其定價原則是“不貼錢、不賺暴利,僅在成本基礎上保留少量利潤”;火山引擎於去年 5 月掀起價格戰時,外界曾質疑低價策略對長期毛利及盈利的潛在壓力,但火山引擎總裁譚待接受採訪時表示,“我們始終堅持在保證毛利的前提下,推進業務規模化。”

當前,豆包 APP 相較於同類產品,除了基模能力的優勢外,還具備吐字速度快、首字延遲低的特點,甚至語音通話可實現即時接通——上述優勢,很大程度上得益於團隊對 TPOT、TTFT 兩大核心指標的持續最佳化,而嚴苛的使用者需求適配,又進一步磨練了火山方舟的工程能力。

虎嗅註:TPOT(Time Per Output Token)指 LLM 在首個 token 輸出後,後續每個 token 的平均生成時間,直接影響使用者對模型速度的感知,核心體現平均延遲;TTFT(Time To First Token)衡量使用者提交查詢後至首次看到模型輸出的響應時間,重點強調即時互動場景下的低延遲特性,核心體現首字延遲。

火山一口吃成胖子了?

將視線拉回榜首的火山引擎,其爆發式表現究竟是短期 “虛胖”,還是技術沉澱後的必然爆發?

要回答上述問題,先要明白:MaaS 時代的競爭,不僅是技術戰,更是價格戰與市場戰,國內三大雲廠商的市場策略不盡相同。

火山引擎作為攻擂者,去年至今的“三板斧”清晰明確:2024 年 5 月發起價格戰,將行業每千 Tokens 大模型價格帶入“釐時代”,迅速擴大平台使用規模;2025 年 6 月首創 “輸入長度區間定價”,進一步向開發者釋放技術紅利;2025 年 10 月推出 Model Router,讓開發者和企業能在每次模型呼叫中平衡效果與成本。

阿里雲則堅決推進多輪降價:2024 年 2 月 29 日、3 月 31 日、4 月 8 日三連降後,同年 5 月 Qwen-Long 從 0.02 元 / 千 tokens 降至 0.0005 元,降幅 97%;年底,Qwen-VL 系列降幅達 81.3%-85%;2025 年 9 月,阿里集中發佈七款 AI 模型,在性能、深度推理、多模態、Agent 及 Coding 能力等方面均實現新突破,旗艦模型 Qwen3-Max 性能躋身全球前三。

騰訊雲態度更為決絕:為擄獲中小企業和開發者,混元 - lite 從 0.008 元 / 千 tokens 調整為完全免費,API 長度從 4K 升級至 256K;同時,混元 - pro 從 0.1 元 / 千 tokens 降至 0.03 元,降幅 70%,以保持高端市場競爭力。

即便阿里雲、騰訊雲接招迅速,火山引擎仍嘗到了“敢為行業先”的甜頭 ——虎嗅瞭解到,截至 2025 年 9 月,豆包大模型日均處理 30 兆 Tokens,相比 2024 年 5 月首次推出時增長了 25300%。

據 IDC《中國大模型公有雲服務市場分析,2025H1》報告,2025 年上半年中國公有雲大模型服務市場,火山引擎以 49.2% 的份額位居中國第一,意味著中國公有雲上每兩個 Token 就有一個由火山引擎生產;結合此次 Gartner 報告其在 “挑戰者” 象限的表現,火山引擎在 MaaS 業務中已逐漸顯現領先優勢。

不過,也有從業者提出質疑:一是火山引擎如此陡峭的 API 資料,外界無法判斷其自用流量(字節跳動內部應用)與公有雲對外服務的比例,不排除是字節系內循環在“扛著豆包大模型跑”;二是 Omdia 發佈的《中國 AI 雲市場,1H25》報告顯示,阿里 AI 雲以 35.8% 份額位列國內第一。

虎嗅研究發現,兩家報告的核心差異在於統計口徑:Omdia 涵蓋 IaaS、PaaS、MaaS 全鏈條,但剔除了自然語言處理等 AI 專項服務,以及火山引擎的私有化部署、定製化解決方案;而 IDC 則聚焦 MaaS 層面的 API 呼叫量,未納入傳統雲服務。

換句話說,中國 AI 雲第一的歸屬更像是一場“口徑遊戲”——火山引擎強調以 API 呼叫量為主的業務份額中國第一,阿里雲則在大模型帶動的相關 AI 技術服務與傳統雲資源上穩居中國第一。

有鑑於此,火山引擎 API 雖然“賣爆了”,但很難單靠 API 做大規模與利潤。目前,整體雲端運算市場的收入構成仍是資源導向、IaaS 為主,無論大模型訓練,還是 Agent 開發、部署,最終都離不開底層資源——尤其隨著 Agent 加速落地,阿里雲、騰訊雲憑藉過往豐富的 IaaS、PaaS 積累,能更好承接多樣化使用者需求,火山引擎試圖靠 API “扛著雲跑”,仍有不少短板需要補齊。

這種差距也直觀體現在營收規模上:虎嗅瞭解到,火山引擎 2025 年整體收入目標有望突破 200 億元——雖勉強達到騰訊雲的一半、阿里雲的五分之一,卻能死死咬住佔據先發優勢的百度智能雲(2024 年營收 218 億元),甚至有望在 2026 年實現超越。

有接近火山引擎人士指出,譚待在 2021 年一肩擔起雲端運算業務時曾喊出 1000 億的營收目標,彼時很多人心裡是打問號的,但這兩年大模型帶來的業績增速在所有產品中最快,毛利也是最好的之一,2025 年實現同比翻番壓力並不大。

此外,虎嗅瞭解到,火山引擎的銷售考核中 MaaS 業務優先順序最高,且將作為收入貢獻主力;2026 年 MaaS 在總收入結構中的佔比將進一步提升,未來三五年的營收格局不會改變。

這一戰略決策基於兩層核心考量:

  • 一是傳統雲端運算公司的核心收入來自虛擬機器、儲存等資源售賣,而大模型的普及本質上在減少這類需求;火山引擎無傳統業務包袱,可激進調整架構適配 MaaS 業務 ——其目標不僅是“賣雲”,更在於擴大生態影響力;
  • 二是行業已從 IaaS、PaaS 階段,邁入以 MaaS 為核心的用雲新時代——大模型的本質是算力換智能,火山引擎的 MaaS 優先策略,使其能夠集中資源打造核心產品,避免算力、資源和人才的分散。

這背後的深層意志,是字節跳動近年來有意強化的外界定位:自己是一家科技公司,而非娛樂平台 ——火山引擎正肩負著字節跳動向科技公司蛻變的核心使命。

火山是行業狂飆的縮影

“長期來看,模型競爭將愈發激烈,兩三個月就會有新的 SOTA(最優性能)模型出現;預計到 2026 年,全球 MaaS 賽道大機率僅剩下五六家第一梯隊玩家。” 一位資深行業觀察人士向虎嗅分析,如此激烈的競爭格局下,AI 雲廠商若想不掉隊,需同時滿足“基模能力不落後”“工程化實力持續升級”兩大前提。

說白了,基模能力會倒逼企業不斷去堆卡,工程化升級要求成本更低、更易用,兩者疊加拼的依然是模型的“性價比”。

從當前各類榜單與實測結果來看,中國市場的模型排名與實際性能表現基本匹配;而在全球市場,即便阿里雲、騰訊雲、火山引擎在 AI 應用落地及工程最佳化上“小步快跑”,但與Google、微軟、AWS 仍存在差距。

虎嗅與多位從業者溝通發現,主要體現在兩方面:

一是基礎研究的“地基”差異:Google、微軟、AWS “血槽” 深厚,尤其在核心演算法與架構自主創新上一直扮演領導者角色,高引用研究成果佔比高,科研與產業轉化能力強;因此,“三巨頭”至今仍在持續定義新的工具能力與行業標準,如 MCP、Skills、Google A2A,以及 Coding 與 CLI 結合、Vibe Coding 等創新方向。

二是 AGI 生態佈局與算力建構:國外如 OpenAI、Google 建構了明確的長期路線,聚焦通用智能底層邏輯探索;Google、微軟、AWS 更是形成了從晶片、框架到雲服務的全端閉環,通過硬體與軟體的垂直整合“滾雪球”——相比之下,國內雲巨頭在工程化效率與叢集規模上仍有差距。

以Google為例,今年在 AI 領域(從語言模型到生圖、生視訊能力)呈現全方面領先態勢,反映在 Gartner 榜單上,其“落地能力”與大模型能力均位列全球第一。

Google的領先並非偶然,得益於其深厚的技術儲備與頂級人才梯隊,能夠快速實現從晶片(TPU)到軟體的垂直整合。值得玩味的是,Google TPU 一開始並不好用,但架不住輝達越賣越貴,倒逼Google加大自研投入——在 transformer 架構推理需求暴漲背景下,Google演算法架構晶片的成本與性價比優勢逐漸凸顯,甚至近期一度“打崩”輝達股價,逼得黃仁勳不得不公開回應。

當然,國內外 GPU 供應格局的差異,也加速了 AI 開發平台工程化能力的差距拉大——這與推理叢集規模直接相關:叢集規模越大,資源利用率與工程化效率越高——由此可見,雲端運算作為規模生意,在 GPU 主導的 AI 雲時代,規模效應會持續拉大 MaaS 業務的競爭差距。

不過,一位大廠 AI 工程師樂觀認為:“在 AIGC 領域,尤其生圖、生視訊方向,國內追趕速度較快——這主要源於 scaling law(縮放定律)的放緩,單純堆高參數量帶來的效果提升已逐漸平滑,收益邊際遞減;但在語言模型領域,國內外雲廠商仍存在幾個月的迭代差距。”

尤其在大模型浪潮推動之下,中國移動網際網路已進入使用者、流量趨於見頂的成熟期,監管將更側重產業網際網路的推進與建設,這意味著 MaaS 正處於平台重構生態的關鍵節點。

若 AI 必將成為貫穿數萬家企業、兆產值就業崗位的連結管道,阿里、騰訊、字節能否建構起包括應用、伺服器、晶片、模型在內的完整自研體系,很大程度上決定著其生態重構的進度,以及能否在模型時代牢牢攥緊流量入口。 (虎嗅APP)