完全取代Claude Code?OpenAI反擊來了,推出Codex app「限時免費使用」

多年來我一直是終端/Emacs 的忠實使用者,但自從使用 Codex 應用程式後,再回到終端就感覺像是回到了過去。這簡直是專為Agent打造的原生開發介面體驗

這是OpenAI總裁Greg Brockman為剛剛推出的Codex App的彩虹屁,當然了好不好還要使用者說了算

行業內的人應該有個基本共識,codex程式碼能力非常強,但是體驗比較差勁,基本上這一段時間讓Claude code 壓著打,終於OpenAI的反擊還是來了,還是搶在據傳Claude sonnet 5發佈前一天推出

MagicPath CEO 說他最近幾周一直在使用 Codex 應用。  這已經成為在大型複雜程式碼庫中進行編碼的首選方法。  正因如此,他們才能在 MagicPath 中推出如此多的功能。  它完全取代了Cursor使用方式和 Claude Code

這次OpenAI 推出的是macOS版Codex應用,這是一個全新的互動介面,旨在幫助開發者輕鬆管理多個AI Agents,支援平行運行任務,並與智能體協作處理長時間運行的複雜工作,通過skills擴展 Codex 的功能帶來的是旗艦級體驗。

介面長這樣:

一個好消息,在限定時間內,ChatGPT免費版和Go版使用者將能使用Codex。對於Plus、Pro、商業、企業和教育版使用者,速率限制將翻倍(這些更高的限制適用於所有使用Codex的場景——包括桌面應用、CLI、IDE以及雲端)

OpenAI表示,Codex應用正在改變軟體的建構方式和建構者——從與單個編碼智能體配對進行有針對性的編輯,到在設計、建構、發佈和維護軟體的整個生命周期中,監督協同工作的智能體團隊。

定位:Codex應用為Agent的指揮中心

自2025年4月Codex發佈以來,開發者與智能體的工作方式發生了根本性變化。模型現在能夠端到端地處理複雜的長期任務,開發者則開始在項目中編排多個智能體:分配工作、平行運行任務,並信任智能體承擔可能跨越數小時、數天或數周的實質性項目。

核心挑戰已從智能體能做什麼,轉變為人類如何大規模地指導、監督和與它們協作。現有的IDE和基於終端的工具並非為支援這種工作方式而建構。

這種新的建構方式與新的模型能力需要一種不同的工具,因此OpenAI推出了Codex桌面應用,一個專為智能體打造的指揮中心

1. 與多個智能體平行工作

Codex應用提供了一個專注於與智能體進行多工處理的空間。智能體在按項目組織的獨立線程中運行,因此使用者可以在任務之間無縫切換而不會丟失上下文。使用者可以線上程中審查智能體的更改、對差異(diff)發表評論,甚至在編輯器中打開它進行手動修改。

它還內建了對worktrees的支援,因此多個智能體可以在同一個程式碼倉庫上工作而不會產生衝突。每個智能體都在程式碼的隔離副本上工作,允許使用者探索不同的實現路徑,而無需追蹤它們對本地程式碼庫的影響。在智能體工作時,使用者可以在本地檢出(check out)其更改,或者讓它在不觸動本地git狀態的情況下繼續推進。

該應用會自動同步使用者在Codex CLI和IDE擴展中的會話歷史和配置,因此使用者可以立即在現有項目上開始使用。

2. 通過Skills超越程式碼生成

Codex正在從一個編寫程式碼的智能體,演變為一個使用程式碼在電腦上完成工作的智能體。通過技能(skills),使用者可以輕鬆地將Codex的能力從程式碼生成擴展到需要收集和綜合資訊、解決問題、寫作等更多工。

skill捆綁了指令、資源和指令碼,使Codex能夠可靠地連接到工具、運行工作流,並根據團隊的偏好完成任務。Codex應用包含一個專門用於建立和管理技能的介面。使用者可以明確要求Codex使用特定技能,或者讓它根據當前任務自動使用

為了展示其能力,OpenAI讓Codex製作了一款賽車遊戲,一句話消耗700萬Token,從零手搓3D賽車遊戲!要求包含不同的賽車手、八張地圖,甚至還有玩家可以用空格鍵使用的道具,

Codex利用一個圖像生成技能(由GPT Image驅動)和一個網頁遊戲開發技能,僅憑一個初始使用者提示,便獨立工作並消耗了超過700萬個token來建構這款遊戲。在此過程中,它扮演了設計師、遊戲開發者和QA測試員的角色,通過實際玩遊戲來驗證自己的工作

以下是用於建立遊戲的、為清晰起見經過總結的初始提示:

> 將Voxel Velocity實現為一款使用Three.js的3D體素卡丁車賽車遊戲,只設定一種模式:單人賽(固定3圈,1名人類玩家對7名CPU,所有8條賽道立即解鎖,無進度系統)。建構一個最簡化的賽前流程,僅包含:賽道(8個)、角色(8個)、難度(休閒/標準/困難)、可選的鏡像模式、可選的允許克隆角色,以及開始比賽按鈕。另外需要一個選項菜單和一個賽內暫停菜單(繼續/重新開始/退出)。

> 建立一個街機風格的駕駛模型,具有響應靈敏的操控、對輕微撞牆的容錯、以有意義的漂移為主要技巧,以及一個能產生精確增壓等級的漂移充能系統(1級0.7秒,2級1.1秒,3級1.5秒),同時保持基礎速度“快但可讀”,並在寬闊的道路上保持持續的超車機會。

> 實現8種道具,單道具容量,具有微妙的位置加權分佈和溫和的效果(最大失控時間≤1.2秒,最大轉向停用≤0.6秒),旨在創造有趣的混亂而非硬控。越野減速效果在增壓期間減少50%。

> 定義8個角色的給定屬性和AI傾向,實現CPU難度預設和賽道編寫的賽車/變化樣條線、漂移區和障礙規避,以便AI能利用多車道寬度進行乾淨的超車。


> 最後,交付HUD/音訊等基本要素(位置、圈數/最後一圈橫幅、小地圖、道具槽、計時器/分段時間、清晰的音效,以及每條賽道一個音樂循環)。

隨後,Codex被從一個包含十個通用提示的列表中隨機抽取提示,進行持續的重新提示,以使其繼續解決問題。其中一個示例提示是:

> 你的工作是加入新功能,使遊戲更接近原始設計。首先,玩遊戲並確定與原始設計相比缺少了什麼。然後選擇幾個缺失的功能並實現它們。每實現一個功能後,通過玩遊戲進行徹底測試,確認它能正常工作。如果在玩的過程中發現任何錯誤,也要優先修復它們。

在OpenAI內部,團隊已經建構了數百個技能,幫助多個團隊將那些原本難以一致定義的工作放心地委託給Codex——從運行評估、監控訓練過程,到起草文件和報告增長實驗。

Codex應用包含了一個技能庫,涵蓋了在OpenAI內部流行的工具和工作流,部分重點skill如下:

實現設計:從Figma獲取設計上下文、資產和截圖,並將其轉化為具有1:1視覺保真度的生產級UI程式碼

管理項目:在Linear中分類錯誤、跟蹤發佈、管理團隊工作量等,以保持項目推進

部署到雲端:讓Codex將你建立的Web應用部署到Cloudflare、Netlify、Render和Vercel等流行的雲託管服務商

生成圖像:使用由GPT Image驅動的圖像生成技能,建立和編輯用於網站、UI模型、產品視覺和遊戲資產的圖像

使用OpenAI API建構:在建構時參考最新的OpenAI API文件

建立文件:一套用於讀取、建立和編輯具有專業格式和佈局的PDF、電子表格和docx檔案的技能。

當使用者在應用中建立一個新skill時,該技能可以在任何工作環境中使用:應用內、CLI或IDE擴展中。使用者還可以將技能檢入程式碼倉庫,使其對整個團隊可用。

3. 通過自動化委託重複性工作

借助Codex應用,使用者還可以設定自動化(Automations),讓Codex按照自動計畫在後台工作。自動化將指令與可選技能相結合,並按使用者定義的時間表運行。當自動化完成時,結果會進入一個審查佇列,以便使用者在需要時可以返回並繼續工作。

在OpenAI內部,自動化已被用於處理重複但重要的任務,例如每日問題分類、尋找和總結CI失敗、生成每日發佈簡報、檢查錯誤等。

4. 適配個人工作風格的個性

開發者在與智能體協作時有不同的偏好。一些人想要一個直截了當、注重執行的夥伴;另一些人則更喜歡溝通性強、更具互動性的交流。

Codex現在允許開發者在兩種個性之間進行選擇——一種是簡潔務實的風格,另一種是更健談、更具共情力的風格,兩者在能力上沒有差異。使用者只需在應用、CLI和IDE擴展中使用 /personality 命令即可切換。

請參閱文件,瞭解更多關於如何設定和使用 Codex 應用的資訊

https://developers.openai.com/codex/app

默認安全,可配置設計

OpenAI正在整個Codex智能體技術堆疊中整合設計即安全的理念。Codex應用使用與Codex CLI中相同的原生、開源且可配置的系統級沙盒。

默認情況下,Codex智能體僅限於編輯其工作所在資料夾或分支中的檔案,並使用快取的Web搜尋。當需要運行網路訪問等需要提升權限的命令時,它會請求許可。使用者可以為項目或團隊配置規則,允許某些命令自動以提升的權限運行。

下一步計畫

企業和開發者越來越依賴Codex進行端到端開發。自去年12月中旬GPT-5.2-Codex推出以來,Codex的總體使用量翻了一番,在過去一個月裡,有超過一百萬名開發者使用了Codex。

OpenAI表示將繼續擴展開發者可以使用Codex的場景和方式,包括在Windows上推出該應用、推動模型能力的前沿,並推出更快的推理速度。

在應用內部,團隊將根據真實世界反饋繼續完善多智能體工作流,使其更容易管理平行工作並在智能體之間切換而不丟失上下文。同時,他們也在建構支援基於雲的觸發器的自動化功能,這樣Codex就可以在後台持續運行,而不僅僅是在電腦開著的時候。

Codex建立在一個簡單的前提上:一切都由程式碼控制。一個智能體在推理和生成程式碼方面越出色,它在所有形式的技術和知識工作中就越有能力。然而,當今的一個關鍵挑戰是,前沿模型的能力與人們在實踐中輕鬆使用它們之間的差距。Codex旨在通過簡化指導、監督和將模型全部智能應用於實際工作的方式來縮小這一差距。

OpenAI表示,他們專注於使Codex成為最好的編碼智能體,這也為它成為一個能夠處理超出編寫程式碼範圍的廣泛知識工作任務的強大智能體奠定了基礎。 (AI寒武紀)