Kevin Scott:“長期記憶”是AI創業最被忽視的機會2025 年 12 月 19 日,舊金山。矽谷創業社區 South Park Commons 的一場對話中,微軟 CTO Kevin Scott 聊職業拐點、與 OpenAI 合作、AI 時代更值錢的問題為什麼總被忽視。整場對話 56 分鐘,話題從創業試錯,一路聊到開源與閉源。他最關鍵的一句話是:AI 創業最怕的,不是技術落後,而是把“噪音”當訊號。什麼是噪音?看起來像積極訊號,但對你做的東西沒有價值,而且沒有關係的資訊。 媒體熱度、投資人興趣、技術熱詞,這些訊號容易獲取、容易量化,但可能正在把你引向錯誤的方向。這篇文章講四件事:第一, Kevin 如何學會識別正確的訊號。第二,今天的創業者面對什麼樣的環境。第三, ChatGPT 為什麼成功。第四, 如何識別被忽視的真實訊號。第一節|放棄有趣的技術,選擇值得做的事Kevin Scott 原本想當一名大學教授。博士期間他研究動態二進制翻譯,技術含量極高,但他後來放棄了。原因很簡單:這事除了我,幾乎沒人在意。他說:我花了大量時間研究這些最佳化方法,能提升系統幾個百分點性能。寫論文、被引用、繼續寫論文……然後呢?在學術界,這就是標準路線。但在真實世界裡,這些百分比的提升沒有任何意義。Kevin 第一次意識到:學術界的評價標準,和真實世界的價值判斷,根本不是一回事。學術界看重論文數量、引用次數、同行認可,這套機制清晰、容易量化。但真實世界在意的是:有多少人因此受益?產生了多大價值?這兩套標準不一致,甚至是衝突的。於是他從學術界出來,進入Google。他做的第一個項目,是廣告稽核流程的自動化。這事聽起來一點也不酷。Kevin說:其實就是做一套自動過濾規則,判斷廣告文案能不能用驚嘆號、有沒有成人內容。但這個問題值錢。每天 5000 萬美元的廣告被卡住,人工稽核處理不過來。就這麼點改動,最終每年幫 Google 省了近 10 億美元。這讓他得到創始人獎。從那時起,他確定了一條職業準則。做每一件事,第一眼先看它有沒有可能產生真正的影響,其次才是技術有多有趣。他說,人生是從放棄最複雜的技術,轉向最有價值的工作開始的。這是他第一次識別出正確的“訊號”。第二節|容易獲取的反饋,往往是噪音Kevin 20 年前做的那次選擇很簡單:學術界 vs 商業世界,二選一。今天的 AI 創業者面對的環境要複雜得多。現在做創業比過去任何時候都便宜。但也正因為便宜,試錯的人多了,噪音也就多了。什麼是噪音?他給出定義:看起來像是正反饋,但和產品價值無關的資訊。媒體熱搜、點贊數、風投的興趣,這些都可能是噪音。很多創業者依賴的這些訊號,恰恰也是最容易把你帶偏。因為這些訊號背後有自己的利益機制。媒體需要流量,選擇有話題性的故事。投資人看重多元的項目組合,對熱門賽道表現出興趣。技術社區追逐最新的模型、最大的參數量。但這些和有人願意為你的產品買單是兩回事。更麻煩的是,這些噪音還特別容易獲得。你發一條帖子,幾百個贊;寫一篇文章,上了熱榜;見幾個投資人,都說感興趣。你開始覺得方向是對的。但這可能只是說明:你踩中了一個熱門話題,成了轉發素材,而不是解決了真正的問題。很多創業者開始往熱門概念上靠:“我們是AI+教育”、“AI時代的瀏覽器”、“GPT時代的新筆記工具”……這些說法新穎、容易講,但不等於有人真正需要。Kevin 給了一個判斷方法:要分清楚兩件事。一件事是你希望它發生;另一件事,是它不管有沒有你都會發生。真正適合創業的,是後者。那麼,什麼才是真正的訊號?Kevin 用 ChatGPT 說明。第三節|當所有人卷模型,OpenAI在做什麼ChatGPT 上線時,用的是老模型。業內很多人都見過,Kevin 說,包括他自己在內,沒人想到它會成為爆款。那為什麼它成了?因為所有人在追一個訊號,OpenAI 在追另一個訊號。2022 年底,每個實驗室都在追逐容易量化的數字:更大的參數量、更高的benchmark、更先進的架構。但這些是噪音。OpenAI 關注的訊號是:普通人能不能零門檻使用互動是否足夠自然能否成為日常工具這些才是真實需求。ChatGPT 的改動極小:一套老模型,加上 RLHF,加上一個輸入框。技術上沒有任何突破。但它讓普通人第一次可以直接和 AI 對話,不需要任何技術門檻。Kevin 明確表示:“它不是我們見過最強的模型,但第一次讓 AI 直接進入了使用者生活。”在他看來,這類機會有三個特徵:技術能力已經夠了但沒人認真設計用法因為看起來太普通、太基礎、沒熱度而被忽略。這些機會不會出現在熱詞榜上,也講不出宏大的故事,但可能打開兆美元市場。關鍵是:如何識別這樣的機會?第四節|識別真實訊號的三個標準為此,Kevin 給出了三個判斷標準。標準 1 :看能力和使用的差距他說:現在不是 AI 不夠強,而是很多人不知道怎麼把它用好。這意味著什麼?意味著機會不在能力端,而在使用端。他舉了長期記憶的例子。現在大模型能對話,但記不住歷史。使用者每次都要重新交代背景,AI 像個永遠喝斷片的“實習生”。技術上能解決嗎?完全可以。只需要做資料管道、內容壓縮、歷史記錄。但沒人做。為什麼?因為這不會上論文,也拿不到媒體關注。。Kevin 說:很多人不願意做這件事,是因為它看起來像修修補補,不像創造。但這恰恰是真實訊號。因為使用者真的需要,技術能力已經夠了,只是沒人認真做。標準 2:看誰在製造噪音如果媒體在報導、投資人在追逐、大公司在佈局,這很可能是噪音。這就像 Kevin 20 年前的選擇:他做的是所有人覺得不夠酷的事,但恰恰解決了真實問題。今天同樣如此。已經有太多資源在追逐那些熱門賽道,你作為創業者很難勝出。真正的機會往往在被忽視的地方:大公司覺得太瑣碎、媒體覺得不吸引眼球、投資人覺得不夠宏大。正因為被忽視,競爭反而更小。標準 3 :做小實驗驗證Kevin說,做工具的成本已經非常低了。現在真正缺的,是願意動手的人。比如:讓 AI 記住使用者歷史。搭個簡單的上下文快取,看使用者是否真的需要。用現有工具搭建一個端到端流程。把 AI 對話、自動化工具、文件系統連起來,做一次完整閉環,看能不能真正替代人工。不寫 PPT,直接做互動原型。從產品體驗出發,而不是從概念包裝出發。現在是 AI 創業最好的時候,因為你可以不靠預測未來,只靠動手做個小實驗,就能找到好的方向。關鍵是分清噪音和真實訊號。你是追逐容易講的故事,還是解決真正的問題?結語|訊號比方向更重要Kevin Scott 說,他不追求快樂,只想做有意義的事。因為有意義的事,自帶清晰的訊號。20 年前,Kevin 只需要選擇:學術界還是商業世界。今天的創業者面對更複雜的環境:媒體熱度、投資人興趣、技術熱詞,那些是噪音?那些是訊號?Kevin 的方法是:不要靠判斷去猜,要靠行動去驗證。做工具的成本從未如此低,但噪音也從未如此多。找對訊號,比找對方向更重要。 (AI深度研究員)