#指令模型
阿里深夜幹了件大事,成本暴降90%!
32B尺寸比肩235B性能,兩大新模型已開源。智東西9月12日報導,今天凌晨,阿里通義實驗室正式發佈下一代基礎模型架構Qwen3-Next,並訓練了基於該架構的Qwen3-Next-80B-A3B-Base模型,該模型擁有800億個參數,僅啟動30億個參數。Base模型在Qwen3預訓練資料的子集上訓練,包含15T tokens訓練資料,僅需Qwen3-32B 9.3%的GPU計算資源,針對超過32k的上下文,推理吞吐量可達到Qwen3-32B的10倍以上。同時,基於Base模型,阿里開源了Qwen3-Next-80B-A3B的指令模型(Instruct)和思維模型(Thinking),模型支援原生262144個token上下文長度,可擴展至1010000個token。其中,Qwen3-Next-80B-A3B-Instruct僅支援指令(非思考)模式,其輸出中不生成<think></think>塊;Qwen3-Next-80B-A3B-Thinking僅支援思考模式,為了強制模型進行思考,默認聊天範本自動包含<think>。指令模型的性能表現與參數規模更大的Qwen3-235B-A22B-Instruct-2507相當,思維模型優於Google閉源模型Gemini-2.5-Flash-Thinking。▲指令模型測試基準▲思維模型測試基準在架構升級方面,相比阿里4月底的Qwen3 MoE模型,新增了混合注意力機制、高稀疏度MoE結構、一系列訓練穩定友好的最佳化,以及提升推理效率的多Token預測(MTP)機制等。新模型已在魔搭社區和Hugging Face開源,開發者也可通過Qwen Chat或阿里雲百煉、NVIDIA API Catalog體驗Qwen3-Next。開發者在Qwen的X評論區稱讚其新增的多Token預測(MTP)機制,稱這是最令人印象深刻的部分。Qwen Chat地址:https://chat.qwen.aiHugging Face地址:https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d魔搭社區:https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a阿里雲百煉:https://bailian.console.aliyun.com/?tab=model#/model-market/detail/qwen3?modelGroup=qwen301.指令模型接近235B旗艦模型思維模型超Gemini-2.5總的來看在性能方面,指令模型接近阿里參數規模235B的旗艦模型,思維模型表現優於Gemini-2.5-Flash-Thinking。其基座模型為Qwen3-Next-80B-A3B-Base,僅使用1/10的Non-Embedding啟動參數,在大多數基準測試中,性能表現與Qwen3-32B-Base相近。但其總訓練成本為Qwen3-32B-Base的10%不到。得益於其新的混合模型架構,Qwen3-Next在推理效率方面,與Qwen3-32B相比,Qwen3-Next-80B-A3B在預填充(prefill)階段,在4k tokens的上下文長度下,吞吐量接近前者的7倍,當上下文長度超過32k時,吞吐量提升達到10倍以上。在解碼(decode)階段,該模型在4k上下文下實現近4倍的吞吐量提升,在超過32k的長上下文場景中能保持10倍以上的吞吐優勢。具體來看,其指令模型表現優於Qwen3-30B-A3B-Instruct-2507和Qwen3-32B-Non-thinking,並取得了幾乎與參數規模更大的Qwen3-235B-A22B-Instruct-2507模型相近的結果。只有在面向大模型的綜合性評測基準、高難度數學推理基準AIME25中,指令模型的表現略遜色於Qwen3-235B-A22B-Instruct-2507,在程式設計、複雜問答與長對話的評測中表現更好。Qwen3-Next-80B-A3B-Instruct在RULER上所有長度的表現明顯優於層數相同、注意力層數更多的Qwen3-30B-A3B-Instruct-2507,甚至在256k範圍內都超過了層數更多的Qwen3-235B-A22B-Instruct-2507。思維模型的表現優於預訓練成本更高的Qwen3-30B-A3B-Thinking-2507、Qwen3-32B-thinking,全面超過Google的閉源模型Gemini-2.5-Flash-Thinking,並在部分指標上接近阿里最新旗艦模型Qwen3-235B-A22B-Thinking-2507。02.混合注意力、MoE、穩定最佳化多Token預測加持研究人員在部落格中提到,Qwen3-Next是針對大模型在上下文長度和總參數兩方面不斷擴展的未來趨勢而設計。Qwen3-Next採用的是Qwen3 36T預訓練語料的均勻採樣子集,包含15T tokens的訓練資料,其訓練所消耗的GPU Hours不到Qwen3-30A-3B的80%;與Qwen3-32B相比,僅需9.3%的GPU計算資源,即可實現更優的模型性能。這一模型結構相較其4月底推出的Qwen3的MoE模型,新增了多種新技術並進行了核心改進,包括混合注意力機制、高稀疏度MoE結構、一系列訓練穩定友好的最佳化,以及提升推理效率的多Token預測(MTP)機制等。混合注意力機制:用Gated DeltaNet(線性注意力)和Gated Attention(門控注意力)的組合替換標準注意力,實現超長上下文長度的有效上下文建模。研究人員發現Gated DeltaNet相比常用的滑動窗口注意力(Sliding Window Attention)和Mamba2有更強的上下文學習能力, 並在3:1的混合比例下,即75%層使用Gated DeltaNet,25%層保留標準注意力,能一致超過超越單一架構,實現性能與效率的雙重最佳化。同時在保留的標準注意力中,研究人員進一步引入多項增強設計,包括沿用先前工作的輸出門控機制,緩解注意力中的低秩問題,將單個注意力頭維度從128擴展至256,僅對注意力頭前25%的位置維度加入旋轉位置編碼,提高長度外推效果。高稀疏度混合專家(MoE):在MoE層中實現極低的啟動比率,大幅減少每個token的FLOPS,同時保留模型容量。研究人員的實驗表明,在使用全域負載平衡後,當啟動專家固定時,持續增加專家總參數可帶來訓練loss的穩定下降。此前,Qwen3系列的MoE專家啟動比約為1比16,Qwen3-Next實現了1比50的啟動比。穩定性最佳化:包括零中心化和權重衰減LayerNorm等技術,以及其他增強穩定性以實現魯棒的預訓練和後訓練。研究人員發現,注意力輸出門控機制能消除注意力池與極大啟動等現象,保證模型各部分的數值穩定。多Token預測(MTP):提升預訓練模型性能並加速推理,Qwen3-Next特別最佳化了MTP多步推理性能,通過訓練推理一致的多步訓練,進一步提高了實用場景下的投機採樣(Speculative Decoding)接受率。03.結語:3B啟動參數對標旗艦模型!阿里憑架構創新為模型降本提速Qwen3-Next的突破點在於同時實現了大規模參數容量、低啟動開銷、長上下文處理與平行推理加速。此外結合注意力機制、MoE設計等方面的多項架構創新,阿里通義此次實現僅啟動3B參數模型就能對標規模更大模型的性能,使得模型在性能與效率之間找到更佳平衡點,同時為降低模型訓練、推理成本提供了有效路徑。研究人員在部落格提到,未來他們將持續最佳化這一架構並開發Qwen3.5。與此同時近期阿里通義已經推出數個不同領域的模型,如超兆參數的Qwen3-Max-Preview、文生圖及編輯模型Qwen-Image-edit、語音識別模型Qwen3-ASR-Flash等。隨著其多領域模型的持續落地與開源,阿里通義在開源社區的技術影響力正逐步增強。 (智東西)