當 AI 從試點進入規模化,華為數字金融的長期選擇

15 年,從裝置商到生態加速器。

今年 7 月,調研機構 IDC 發佈的報告顯示,大模型及智能體在工業企業中的滲透率正快速提升,2025 年應用比例從 2024 年的 9.6% 激增至 47.5%。其中,超過 73.7% 的企業的應用已不再停留於試點,而是將 AI 擴展到公司內十數個乃至數十個具體場景。

Google 雲去年 10 月發佈的《生成式 AI 的投資回報》報告顯示,在接受調查的 2500 多位企業高管中,超過 70% 表示其公司在部署生成式 AI 後的第一年便獲得了回報。

2025 年,人工智慧正從輔助工具與前沿探索,全面邁入實際生產流程,評判標準不再僅是技術是否先進,而是投資能否在回報上兌現。相應地,客戶需求也從早期的技術驗證,轉向更明確的實效導向——他們開始計算 AI 的 “投資回報率”,期待解決方案提供商能夠幫助其獲得切實的業務增長與財務回報。

在這種需求轉向下,華為 9 月的全聯接大會上主動回應,分享了諸多關於行業智能化轉型的最新實踐,並行布了多項重要產品和解決方案。

作為華為服務金融客戶的窗口,華為數字金融軍團不僅在全聯接大會上回顧了過往案例,更重點推出了應對 AI 落地挑戰的 FAB(FinAgent Booster)金融智能體加速器。幫助客戶快速建立自己的 Agent 能力,縮短開發周期,讓 AI 加速融入業務流程。

華為 FAB 金融智能體加速器,旨在幫助客戶快速開發智能體、提升利用 AI 的效率。

華為數字金融軍團 CEO 曹沖在演講上說,華為作為一家技術公司,定位絕不是簡單為客戶提供 AI 底座,而是要全面幫助客戶推進 AI 轉型和商業成功。

金融業的 AI 變革雖處早期,卻蘊含著巨大的結構性機會。這對方案商提出了更高要求——必須從技術、生態到服務建構系統性能力,才能滿足客戶在加速期的新需求。華為數字金融基於昇騰算力底座,一是在 AI 智能體平台、模型與場景應用上持續迭代升級; 二是擴大生態合作,目標是在算力之上建構一個覆蓋 AI 平台、模型、場景各層的開放體系,幫更多使用者獲得商業回報。

從數字金融到 AI 金融

1970 年代,中國的銀行業處於完全手工的階段:所有客戶的帳戶資訊、業務憑證都要整理成紙質檔案,存放在專用的檔案櫃裡。若需要查詢歷史記錄,工作人員必須手動翻找檔案,基礎業務高度依賴人工,效率與精準性受限,且憑證容易丟失損壞。

轉機始於 1978 年,中國銀行從日本引進第一套理光 - 8 型主機系統,並於 80 年代批次成套引進日立 M150 小型電腦,逐步實現了儲蓄、對公、聯行、會計報表等日常業務的自動化處理,這標誌著中國金融行業數位化的開端。

第一個階段是數位化,把原本人工操作的業務搬到電腦裡去,到 21 世紀初,隨著網際網路技術的普及,金融行業邁入了資訊化階段,大量業務資料化、智能化,大量的業務也可以線上完成,2002 年,招商銀行率先基於簡訊 /WAP 服務推出了 “掌上銀行”,智慧型手機時代,線上匯款、購買基金、股票交易等也逐步普及。

隨著人工智慧技術的不斷發展,金融行業也開始嘗試在對內對外的各項業務中引入 AI 技術,眼下,行業正在走向第三個階段——金融數智化、AI 化的變革。2021 年《“十四五” 數字經濟發展規劃》中明確提到,合理推動巨量資料、人工智慧、區塊鏈等技術在銀行、證券、保險等領域的深化應用。

技術迭代、技術演進,讓金融企業開始加速 AI 落地,今年 6 月,工行半年報中提到,已有 100 余個對內對外的業務中嵌入了  AI 智能體;郵儲銀行披露,已開展 230  余項大模型場景建設,智能審貸助手” 每天支援三農、信用卡等信審場景超 3 萬筆業務。

AI 的價值開始直接體現在財務回報上。中國銀行業協會黨委書記、專職副會長邢煒在今年的服貿會演講中披露,人工智慧技術顯著提升了資產組織效率,數位化領先的商業銀行的股東回報年均增長率為 8.2%,明顯高於落後銀行的 4.9%。

金融行業對於人工智慧的態度,已經從早期的技術探索過渡到務實的業務融合,目標開始明確指向效率提升與價值兌現。

金融機構希望通過 AI 降本增效、方案商們希望通過技術升級帶來更有競爭力的方案,獲得更多客戶,這對於雙方都是機會、也都是挑戰。資料安全、模型可信度、演算法透明性、算力不足,尤其是中小銀行人才和資源的短板,仍是行業普遍困擾,服務商們需要提升安全性、技術可靠性、效率、可用性等方面的能力,滿足日益增長、變化的需求。

華為數字金融 15 年:賣硬體——做軟體——提供系統解決方案

作為中國最早、最重要的技術基礎設施供應商之一,華為服務金融客戶已有超過 15 年的歷史。2010 年左右,華為作為 ICT 裝置提供商,為銀行等金融機構提供建構其 IT 系統所需的基礎硬體,如伺服器、交換機、儲存等等,滿足金融機構對穩定、可靠、高性能 IT 基礎設施的需求。這也是華為服務金融客戶的起點。

當時華為的業務模型相對簡單,但華為依靠技術與服務,很快打開了市場。隨著能力積累,其佈局已演進為覆蓋軟體、硬體、雲、資料與 AI 的全端式體系,這構成了華為作為技術供應商的核心壁壘。這一優勢直接體現在市場地位上:根據沙利文(Frost & Sullivan)與 IDC 的統計,華為雲在 2023 年及 2024 年中國金融行業大模型市場份額均位列第一。

曹沖介紹,過去 15 年,華為目前已經擁有 150 多家金融解決方案生態夥伴,在金融行業,華為已經攜手全球超過 11000 傢伙伴,在 80 多個國家和地區服務超過 5600 家金融客戶。

這個過程中,華為積累了若干經驗,不光是技術本身,還有關於金融行業的數智化轉型經驗、大型銀行的創新場景思路等等。

2023 年,華為數字金融軍團明確了戰略方向:構築韌性的基礎設施、加速應用現代化,躍升決策數智化、助力業務場景創新;2025 年,面向 AI 時代的到來,數字金融將最後的助力業務場景創新升級為賦能 AI 業務變革,又新下設了證券軍團和保險軍團,服務更多元的客戶。

本次全連接大會上,華為數字金融軍團結合過去的技術積累和對客戶需求的洞察,將 AI 創新方案、生態實踐、與夥伴的聯合方案、工程化經驗沉澱下來,推出一套全新的解決方案 FAB(FinAgent Booster)-金融智能體加速器。

在 AI Agent 商業化元年,華為沒有直接給客戶提供 Agent 本身,而是提供了一個軟體開發平台,加速客戶的開發,讓他們更高效地擁有自己的智能體與 AI 能力。

曹沖說,AI 給金融行業帶來了結構性的變革,服務從 GUI(圖形介面互動)被動服務向 LUI(自然語言互動)主動服務轉型、人機協作從人 + 工具向人 +AI 同事轉型、規則 + 結構化資料向知識 + 智能體轉型、計算中心從通用計算向智算結合通算轉型。

為了讓客戶能適應這種劇烈的變化,幫助他們開發自己的能力、而不是提供通用的解決方案,是更合理、更高效的方式,他解釋說,金融企業級 AI 架構,必須要將能力 “解耦”,對智能體進行功能解耦,避免煙囪式開發;對模型能力分層解耦,通過強化學習和領域知識結合,建構細分場景的 “業務專家” 模型,支撐 AI 決策的專業性不斷提升。

華為將 FAB 的特點總結為三點:

  • 開箱易用:包含 50+ 專用場景的工作流、合作夥伴積累的 30+ 原子化能力,實現 AI 能力的 “樣板間”,把典型場景智能體的開發時間從月級縮短為周級;
  • 開箱隨用:提供 MCP 生態和知識庫,客戶可以方便地定製、組裝各種能力,與自己或其他第三方服務快速連接。
  • 開箱暢用:典型場景的調優,通過資料合成、提示詞最佳化, 強化學習,讓模型精度和效果快速提升,實現 90% 以上的意圖識別精準率, 85% 以上的任務調度精準率。

華為通過技術手段最佳化 FAB 的使用門檻,希望做到讓客戶開箱即用。

華為多年積累的行業經驗與技術能力,是實現上述能力的基礎。

去年曹沖在演講中曾總結,華為數字金融從為客戶提供可靠的基礎硬體,到提供金融級的平台軟體,再到系統性的解決方案,現在,華為數字金融希望能加速客戶的數智化處理程序,助力他們更方便、高效地通過 AI 能力提升效率、獲得商業回報。

“安全要求極高” 是金融行業區別於其他行業的一大特點,方案商必須提供可靠的基礎設施、魯棒性極強的軟體保障系統安全。駭客的技術也在與日俱進,傳統計算需 1 兆年破解的加密,量子計算僅需 100 秒,華為此次發佈了一系列安全方案,包括包括零信任園區網即時動態鑑權;量子安全廣域網實現抗量子解密;AI 訓推保護方案防推理模型投毒;資料安全黑匣子抗極限網路攻擊。

安全基礎之上,是高效,AI 落地到業務中表現如何,依賴的依然是 AI 大模型三要素:演算法、算力和資料。

華為的優勢是自己生態內有完整的技術支援,算力方面,昇騰算力叢集提供低延遲、高效率的計算能力,提升推理資源利用率。

資料上,華為提供了一套全鏈路、全要素的資料處理能力,將金融行業傳統的資料湖升級為知識湖,在保留原有資料的情況下,疊加一層知識圖譜的結構、語義與業務上下文,AI 在呼叫資料前,能先經過知識湖,理解沉澱下來的經驗,提高精準率與效率,讓 AI 智能體能夠像資深專家一樣,進行深度的推理和決策。

“要像管理資料一樣管理知識,包括我們的經驗、語義等一切在數位化時代不能量化的東西,這樣 AI 才能更懂業務。” 曹沖介紹說。

以 “融海計畫”  引領生態共贏

金融本身是一個極其依賴生態、合作的行業。一筆完整的金融業務,往往涉及多個環節和機構,以確保資金的的安全和高效流轉。同時強監管的特性,也決定了單靠機構自身難以完成合規驗證。

而隨著全球化合規要求日益嚴峻、技術全球化協作加深,不管是作為需求方還是供應方,都需要共同面對急劇變化的環境,科技企業單打獨鬥的時代已經過去。

大型國有銀行、股份制銀行與區域性中小銀行,在業務重點、技術能力、業務需求上都有顯著不同,有的更關注增長、有的更關注合規;各個國家和地區都有著各自的政策、體系與商業規則,單一方案商提供的單一產品難以形成足夠的競爭力,往往需要多方協同,比如結合全球獨立軟體開發商(ISV)的通用技術與本地系統整合商(SI)的落地經驗,高效服務當地客戶,前者提供行業領先的、通用的技術方案,後者因地制宜,提供當地市場獨特的 know-how。

華為數字金融軍團也在這個背景下,繼續加速生態建設。2021 年,華為就曾推出智慧金融夥伴出海計畫(簡稱 “FPGGP”),希望建立一個幫助中國金融夥伴走向全球市場的平台,它是全球優秀獨立軟體開發商和本地系統整合商的橋樑,把雙方的經驗與優勢互補。

去年,根據使用者加速數智化轉型的需求,華為將其升級為 “融海計畫”,下設三個子計畫,不再只圍繞出海,而是從 “出海” 即金融夥伴出海計畫(FPGGP)、“開發驗證” 方案精築計畫(OBP)、“孵化創新場景” 睿變創新計畫(MVP)三個維度,幫助生態內的合作夥伴。

金融夥伴出海計畫已經幫助一些中國企業加速走向了全球市場、讓全球客戶受益,華為與長亮科技合作,為菲律賓數字銀行 UnionDigital 開發新一代核心業務平台,用時 35 天完成貸款核心系統上線;

方案精築計畫主要是與合作夥伴溝通深度開發和整合驗證,提高數智化轉型的效率,提升 AI 系統在業務中應用的速度與精度。華為與神州資訊合作開發了一套新的分佈式系統,能夠同時處理每秒超過 10000 筆的聯機交易和聯機批處理任務,結息日批處理時間縮短至 60 分鐘以內。

睿變創新計畫則是幫助客戶孵化 AI 創新的應用場景,華為基於昇騰生態的輕量化金融大模型,幫助某銀行客戶建構智能信貸助手,智能生成信貸報告,時間從數天縮短到數小時。

華為數字金融軍團還披露了人才培養上的一些努力,華為已經完成 30 多家金融機構的 AI 實訓,培養超過 2000 以上的 AI 人才;曹沖提到,接下來的目標是在國內 AI 人才培養覆蓋 5000 人,在海外數智化人才覆蓋培養 5000 人;同時,完成 5 期銀行數位化轉型海外班。

在全聯接大會上的演講中,曹沖總結,華為過去是靠算力變現,但在 AI 時代,華為要和客戶用共創的模式,從底座、模型、知識、平台和工程、架構,場景,人才和生態八個方面,全面建構能力,支撐客戶 AI 變革有效落地。

“很多金融機構,對 AI 的戰略和價值落地仍有很多困惑和困難,我們認為,一定要堅信 AI 對行業的變化是深遠的,決不能低估 AI 對金融的長期價值,要面向未來積極佈局和探索;同時,也不能高估 AI 的短期價值,要一步一個腳印去實踐。” 曹沖說。 (晚點LatePost)