2025 年 12 月 4 日,紐約曼哈頓。《紐約時報》DealBook峰會上,主持人 Andrew Ross Sorkin 問了一個所有人都在想的問題:到 AGI(通用人工智慧),還需不需要再來一次像 Transformer 那樣的技術突破?Anthropic CEO Dario Amodei 的回答是:No,I think scaling is going to get us there.(不用,我認為持續擴大規模就能讓我們到達那裡)把模型做大,把算力往上堆,按照這條擴展曲線持續推進,總有一天會撞上類人智能的臨界點。但他緊接著潑了冷水。技術層面,他非常有信心;經濟層面,他看到的卻是巨大的不確定性。Anthropic 過去三年營收增長 10 倍,但Amodei在台上給出的預測模型顯示:未來 Anthropic 收入可能在 200 億到 500 億美元之間波動。只要在資料中心投資上算錯時間點,就可能從盈利軌道滑向現金流危機。在他看來,一些玩家正在用激進方式下重注,把整個 AI 行業推向泡沫邊緣。這場對話引出了三個值得深入的問題:持續擴大規模究竟是怎樣的技術路線?為什麼 Amodei 堅信這條路,卻又不斷強調經濟風險?當 AI 開始重構工作方式,社會準備好了嗎?第一節 | 技術路線:Scaling Law的十年證明不是所有人都敢把 AGI 的終極路徑,說得像流水線一樣簡單。但 Dario Amodei 敢。他說:“我過去十年一直在觀察 Scaling Law,從GPT 到 Claude,我們都是在這條路上。”在這場採訪裡,他這樣描述 AI 能力演化: 你往模型裡加資料、加算力、加結構上的小改動,它就會自然變強。沒有神秘點,沒有範式突破。推理會提升,程式碼會更好,科學、法律、金融、材料……模型在所有方向一起進步。這是他的親身經歷。從GPT-2、GPT-3的早期主導者,到如今帶領 Anthropic 發佈 Claude 4.5。1、Claude 的證明:不是在進化,而是在放大在 Amodei 看來,Claude 的強大不是因為架構更複雜,而是因為整個系統沿著Scaling Law 做到了足夠大、足夠穩、足夠實用。Claude Opus 4.5 的發佈就是一次集中展示: 在SWE-bench Verified編碼測試中達到80.9%,超過GPT-5.1的77.9%和Gemini 3 Pro的76.2%;在科學推理、金融應用、生物醫學資料處理上,Claude 不只是能用,而是開始產生真實的決策影響。更關鍵的訊號來自 Anthropic 內部。Amodei 透露,他們的工程師已經不再打開編輯器從頭寫程式碼,而是讓Claude生成第一版,自己只做編輯和稽核。2、Scaling Law 的驗證路徑,也是一條產品化試驗線Amodei 不只是相信 Scaling Law,他在用真金白銀驗證它。邊走邊投,邊驗證邊調整。Anthropic 三年營收曲線就是最直接的證明:從零到1億美元,再到10億,今年預計達到 90 億美元。模型能力提升,企業需求跟著增長;需求增長,又推動模型繼續進化。Claude 沒有做成爆款對話產品,而是深入企業一線:開發工具、自動化助手、科研合作者。這種更慢但更寬的能力拓展路徑,正是 Scaling Law 在商業化層面的體現。不是打造一個天才,而是批次複製靠譜的合作者。他不是在等 AGI 奇點,而是在把 Claude一步步打造成一整條生產線。這條生產線積累的資料、經驗、客戶關係越多,就越難被覆刻。擴大規模不只是把模型做大,更是把這些積累變成競爭壁壘。別人還在爭論要不要相信 Scaling Law,Anthropic 已經用它建起了護城河。第二節 | 經濟帳本:500億投資如何不翻車Amodei 對Scaling Law 的技術路線有信心,但他也強調:能不能做到是技術問題,做不做得起是經濟問題。模型可以持續變強,但你也必須算清楚經濟帳:那一年能賺錢、要買多少晶片、什麼時候可能資金斷裂。他說:“我們每年收入翻十倍,但我必須今天就決定,要不要買 2027 年的計算資源。”1、500 億投入,是押注也是賭未來Anthropic 公佈了一個驚人的數字:未來四年將在美國投資 500 億美元用於 AI 基礎設施。這包括德州與紐約的資料中心,以及對微軟 Azure雲平台 300 億美元的採購承諾。但 Amodei 給出的解釋是: 如果我買少了,客戶排隊排不到就走了;如果我買多了,收入沒跟上,現金流撐不住,甚至有破產風險。他提出了一個核心概念:不確定性錐形(cone of uncertainty)。這不是 PPT 上的增長曲線,而是 Anthropic 內部做戰略預算時真正畫出來的風險模型:Anthropic 明年的收入可能是 200 億美元,也可能是 500 億美元,這種巨大的不確定性決定了現在該買多少算力、能承受多大風險。2、YOLO派和保守派的路線分叉而 OpenAI 的路線截然不同。雖然 Amodei 沒有直接點名,但他在採訪中提到了 Sam Altman 從巨額虧損衝向 2030 年盈利的計畫,並評價道:“我們看到有公司在YOLO(孤注一擲),把所有籌碼都押上了,幾乎不給自己留容錯空間。”Anthropic 的選擇是另一條路:所有算力採購按最壞10%的收入預期做預算保留高利潤率,用於覆蓋未來兩年scaling投資放棄消費級入口,只服務企業客戶,減少不確定變數這不是慢,而是先確保企業能活下去。為什麼如此謹慎?因為Amodei對未來的高增長保持懷疑。他在對話裡說: 過去三年,每年收入翻10倍。如果我照這條線繼續推,就是明年1000億。 但我不相信真會這樣增長。那只是理論上的最好情況。他強調的是經濟可行性,不是技術可能性。Claude Opus 4.5能力再好,如果企業不續費、資料中心養不起、資本斷供,那Scaling Law再正確,也推不動。真正的路線判斷不是能不能做,而是值不值得投、投不投得起。第三節 | 社會影響:誰受益,誰被替代對於 Dario Amodei 來說,AGI 不是終點,只是過程。技術能力每年增強,但普通人並不會自動跟上。AI 可以快速寫程式碼、做科學研究、處理金融建模,但誰來決定它該做那件事?誰來負責它做錯時的後果?誰從中受益,誰最先被替代?這才是他更關心的問題。1、AI 變強的同時,工作正在加速重構Anthropic 在今年 8 月做了一次內部研究,調研了 132 名工程師和研究員。結果顯示:AI 工具確實提升了生產力,讓工程師能夠處理超出原有專業範圍的任務。但同時削弱了團隊協作、導師制度和技能發展路徑。整體趨勢是,團隊正在變成少數高手+AI的組合。更關鍵的變化是:入門級工程師的工作正在被 AI 取代,寫程式碼變成了監督程式碼,技術崗開始往全端、策略、審校方向轉移。這不只是效率提升,而是職業路徑的根本重構。當新人無法通過寫簡單程式碼來積累經驗時,如何培養下一代技術專家?這是 Anthropic 內部也在思考的問題。2、Amodei的預測:比你想的更冷靜,也更現實在這場 DealBook 對話之前,Amodei已經在11月中旬的 CBS《60分鐘》節目中直面過一個問題:AI 是否會讓大批人失業?他的回答很直接:是的。AI 取代的第一批人不是工人,而是入門級白領,特別是那些在保險理賠、客服、行政、初級技術支援等崗位上工作的人。這些崗位很可能會面臨大規模的工作轉型壓力。但他不是為了製造恐慌,而是提出了三層解決方案:企業層面:不要只用 AI 減人,更要用 AI 放大人的價值。Claude 的正確用法是讓一個人做原來 10 個人的產出,而不是裁掉 10 個人。政策層面:政府需要參與再培訓,但更重要的是分配機制。如果 AI 帶來每年5%-10%的經濟增長,那是一個可以再分配的超級大蛋糕。社會層面:長期來看,人類社會的結構要調整,不再把工作當成唯一意義來源。這不是烏托邦。早在1930年,著名經濟學家凱恩斯(John Maynard Keynes)就在《我們後代的經濟可能性》(Economic Possibilities for Our Grandchildren)中提出過這個預言:技術進步可能最終解放我們,不再為了生存而工作。未來,問題不再是 AGI 能不能做出來,而是你準備好怎麼與它共處了嗎?這條擴展路線不只是技術問題,更是社會問題。誰能率先摸索出人機協作的有效模式,誰就贏得了未來。結語 | 能到 AGI,前提是活著到Dario Amodei 不是來講 AI 奇點故事的。他講的是一條用資料和財務驗證過的路線:Claude 每年變強一點,處理程式碼bug、生成科學推論、搭建專業工作流。這背後是 Amodei 十年如一日相信的一件事:Scaling Law 不靠靈光一現,只靠一步步推演。他用它造出了 Claude,也用它規劃了 500 億美元的投資、90 億營收目標和風險緩衝線。核心問題不是“我們快到AGI了”,而是我們能不能在做出 AGI 的過程中活下來。別人在賭誰先做出突破,Anthropic 在算誰能撐到終點。把模型一路做大,就真能到 AGI 嗎?Amodei 的回答是:可以。前提是你準備好了承擔相應的經濟風險和社會責任。 (AI 深度研究員)