最近,Google DeepMind 掌門人德米斯·哈薩比斯(Demis Hassabis)接受 CNBC 專訪。他難得敞開心扉,直言不諱地評價了全球 AI 格局,尤其是中國 AI 的追趕速度和創新現狀。“中國團隊的追趕速度極快,只落後幾個月,但在原創性上,他們還沒拿出 Transformer 級的東西。”以 DeepSeek、阿里為代表的中國 AI 團隊,在工程效率、推理最佳化、成本控制上,展現了恐怖的實力。“一篇新論文出來,他們往往能以驚人的速度復現,甚至在某些方面做得更好。”換句話說,在 “把已知路徑做到極致” 這件事上,中國團隊已經證明了自己是全球頂級玩家。也正因為如此,矽谷過去那種“領先一代”的技術安全感,正在被一點點消耗掉。不是按年,而是按月縮水。要知道,過去很長一段時間美國尤其是矽谷派的主流觀點是:中國在 AI 上還遠遠落後,大概是幾年的差距。根據史丹佛大學《2025 年人工智慧指數報告》,中國在 AI 論文發表和專利申請總量上持續領先。且像 DeepSeek、智譜等機構發佈的模型,在國際基準測試中已與第一梯隊產品表現相當。以 DeepSeek V3.2 為例,在公開的推理類基準測試中,它已經能夠全面對標 GPT-5,僅略低於 Gemini 3 Pro。然而,他也指出原創性依然是中國團隊的短板。Transformer 或 AlphaGo 那樣從零到一的技術突破,目前在中國尚未出現。換句話說,中國團隊可以“開車飛馳在既有軌道上”,但鋪設全新軌道的能力仍需時間和積累。哈薩比斯強調,這並非能力不足,而是原創性突破往往需要長期科研積累、實驗失敗和探索精神的結合。不過哈薩比斯也看到了中國 AI 獨有的潛力,他認為當工程最佳化達到一定高度,往往會催生質變。中國憑藉廣闊的應用場景、迅速的市場反應和持續投入,很可能從別出心裁的角度,斬出那一刀改變格局的創新。在談到通向 AGI 的挑戰時,哈薩比斯強調,現有大模型存在“鋸齒狀智能”(jagged intelligence)。這是指模型在某些任務上表現非常出色,但面對複雜因果鏈條、多步驟邏輯推理或現實世界常識時,能力不穩定甚至可能出錯。這說明通用智能不僅需要強大的處理能力,還要在多個維度上保持穩定和一致。除此之外,現有系統無法持續線上學習,也難以自發產生原創性想法,通向 AGI 仍需克服這些根本性限制。在這一背景下,哈薩比斯談到 Scaling Law(規模定律)及其作用。他認為,雖然模型增大、算力增加和資料擴充的回報增速有所放緩,但總體進展依然非常好,能力提升仍值得投入。然而,要真正實現 AGI,僅靠 Scaling Law 仍不夠,還需要一兩個像 Transformer 那樣的重大範式突破。哈薩比斯保持謹慎樂觀,預計 AGI 很可能在五到十年內實現,同時指出算力問題最終歸結於能源,因此未來能源將成為“智能的貨幣”。他還進一步提到“世界模型”概念,作為通向 AGI 的核心手段。與 LLM 主要處理文字不同,世界模型能夠理解因果關係和長期後果,在腦中模擬世界、驗證假設,實現規劃和預測。未來 AGI 很可能是 LLM 與世界模型的融合體。DeepMind 已在 Genie、視訊生成 Veo 和機器人模擬中佈局早期世界模型,讓 AI 在虛擬環境中練習、犯錯、成長,真正具備“理解”和“預測”能力。在應用層面,哈薩比斯看好端側 AI,即將高效、輕量的模型運行在手機、可穿戴裝置和智能眼鏡等終端上。Google計畫通過 Project Aura 智能眼鏡以及機器人領域的探索,讓 AI 不僅會“說”,還能實際“做事”,並行揮實用價值。過去兩三年,DeepMind 也回歸“創業公司狀態”,快速迭代 Gemini 模型並落地到 Google 核心產品,包括搜尋、Workspace 和智能眼鏡等場景,使Google在算力、模型規模和應用落地上都保持競爭優勢。總體來看,哈薩比斯認為,中國 AI 已憑實力贏得了頂級牌桌的入場券,但未來幾十年的格局,將取決於誰能率先鋪設無人區的軌道。速度固然重要,但方向選擇才是關鍵。真正的競爭,不只是算力之爭,更是敢於探索未知、率先開闢全新路徑的勇氣與能力。在這個意義上,2026 年不僅可能見證端側 AI、agent 系統和機器人領域的突破,也將考驗誰能在通向 AGI 的道路上,把工程能力與原創性創新結合,率先鋪出未來的新軌跡。 (科技狐)