#液冷設計
華為AI 資料中心設計方案,預製化,液冷,電源
01.華為AI資料中心參考設計白皮書解讀近期,華為發佈《華為AI 資料中心設計》,系統闡述了在 AI 算力快速提升背景下,資料中心從傳統 IT 基礎設施向高能耗、高密度算力基礎設施演進的整體設計思路,圍繞園區級規劃、模組化建設、暖通與液冷協同、電源架構重構等核心問題,提出以“可擴展性、確定性和長期演進能力”為核心的設計原則,強調通過分期建設、製冷與供配電系統解耦、高功率液冷架構以及更高效率的供電路徑,來應對 AI 伺服器功耗持續上升、電力資源受限和技術快速迭代帶來的不確定性,為新一代 AI 資料中心的規劃、建設和產業鏈協同提供了系統性的工程參考框架。註:《華為AI 資料中心設計白皮書》全文56頁,需要的可上方二維碼加入微信自取在資料中心建設層面,華為首先解決的不是“效率問題”,而是“不確定性問題”。AI 的最大特點不是算力高,而是變化快,晶片功耗在漲,伺服器形態在變,液冷路線在演進,電力資源卻越來越緊張。在這樣的背景下,華為並沒有去強調某一種最優建築形式,而是反覆強調模組化、分期建設和能力解耦。華為非常克制地避免一次性把園區設計到極致,而是更關注未來每一次擴容是不是“順著原來的邏輯繼續往上堆”。這種設計思路背後,其實是一個很工程化的判斷:AI 資料中心不可能一次建完,它一定是在算力需求、資本投入和電力資源之間不斷博弈、不斷調整的結果。暖通和液冷部分:華為對風冷和液冷的態度其實非常務實,並沒有簡單地站隊某一種技術路線,而是把冷卻方案和機櫃功率區間直接掛鉤。很清楚地指出,在中低功率階段,風冷依然有其成熟度和成本優勢;但當 AI 機櫃進入 80kW、100kW 甚至更高功率區間時,液冷不再是“性能更好”,而是“不做不行”。這裡面一個很重要的判斷是:製冷能力正在從“配套條件”變成“算力能否落地的硬約束”。華為在液冷設計上的核心思路,關注系統層面的可複製性和可維運性,強調 CDU 架構、一次側和二次側解耦、冗餘設計、漏液風險控制以及維運友好性,這其實是在明確一個訊號——液冷不能只是少數高端項目的定製方案,而必須成為像風冷一樣可規模複製的基礎設施,真正關心的不是“液冷能不能跑得更猛”,而是“液冷能不能在成百上千個機櫃、幾十兆瓦規模下長期穩定運行”。電源架構這部分,並沒有簡單地否定傳統交流供電,而是直截了當地指出,在 AI 負載快速抬升的情況下,傳統多級 AC 架構正在被系統性拉到極限。問題不在單台 UPS 或單個配電櫃,而在於能量在傳輸和轉換過程中的層級過多,損耗、發熱和空間佔用被同步放大。華為的設計思路,是儘量讓電力“少繞路、更直達”,通過更高電壓等級、更少的轉換級數,把有限的電力資源更多地交付到算力端。這背後的邏輯非常現實:在電力越來越緊張的時代,誰能用同樣的電,跑出更多有效算力,誰就更具競爭力。華為的設計方案亮點有兩個。第一,它始終站在“十年周期”的角度看問題,而不是圍繞當前某一代晶片或伺服器做最佳化;第二,它把電力、製冷、建築這些過去各自為政的專業體系,統一放進了“算力交付能力”這個核心目標下進行協同設計。這種系統級視角,恰恰是當前很多 AI 資料中心項目最容易缺失的部分。對整個資料中心產業鏈來說,這本白皮書的參考意義其實非常直接。伺服器廠商會意識到,單純堆性能已經不夠,裝置形態必須更早地融入基礎設施約束;液冷廠商會發現,未來拼的不只是換熱性能,而是系統可靠性、工程適配能力和規模複製能力;供配電廠商也會更加清楚,裝置放量只是第一步,真正的價值在於參與下一代供電架構的定義;而對營運方和投資方來說,AI 資料中心已經不再是一個“建成即交付”的項目,而是一套需要長期演進、持續投入的能源系統。整體來看,華為這本 AI 資料中心設計白皮書並不是在給行業一個“標準答案”,而是在幫行業把一個越來越清晰的事實講透:當 AI 成為核心生產力時,資料中心的設計目標,已經從“滿足當前需求”,轉向“為未來的不確定性預留足夠的空間”。這一點,可能比任何具體參數,都更值得整個產業反覆琢磨。 (零氪1+1)