自從 2022 年 ChatGPT 3.5 橫空出世,讓世人領略到 AI 的非凡魅力;再到 2024 年底 DeepSeek 驚豔登場,給國人帶來了巨大的驚喜與自信。如今,各類大模型(LLM)及 AI 應用已經深刻地改變了我們的生活。
AI 每天都在增強功能。昨天做不到的事,今天已經能做;前天做不好的題,今天已經可以輕鬆解決。我們彷彿回到了蒸汽機投入實用後的那段時間——新技術、新發明以肉眼可見的速度狂飆突進。
然而,在這波 AI 浪潮的狂歡背後,科技界仍存爭議:LLM 真的是通往 AGI(通用人工智慧)的正確方向嗎? 或者說,僅靠當前的 LLM 就足夠了嗎?
答案其實很清晰:不夠。
Transformer 是一次偉大的突破,但要讓機器真正“理解世界”,我們仍需要更多類似 Transformer 等級的全新核心技術。
我們知道,當前大模型的訓練方法,本質是讓 Transformer 在大量文字裡尋找“詞與詞的關係”,並基於這些統計關係預測下一個詞。
訓練完成後,所有知識都被壓縮排最終的權重檔案裡,像一張凝固的“知識快照”。 但之後它不會自動學習新知識,除非重新訓練或微調。明天產生的新知識無法自動融入,換言之,LLM 本身沒有即時的學習能力。
從上面你很快能就發現當前基於LLM的AI的兩個“死穴”:
其一,LLM只是一個機率模型,它知道“E=mc²”後面大機率跟著“愛因斯坦”,也知道怎麼用這句話造句,但它不知道這公式是怎麼推匯出來的,也不知道如果光速改變了世界會怎樣。它學到的是知識的“投影”(文字),而不是知識的“本體”(邏輯與因果)。
其二,它的知識是靜態的。正因為它沒有一個知識的生產過程,所以它不知道這些知識是如何產生的,為什麼會形成這個知識,這些知識為什麼對,為什麼錯。
正如X上有某位大佬所言:“當前 AI 水平離真正的 AGI 還差好幾個 Transformer 等級的創新。” 但遺憾的是,現在還沒有可以取代Transformer的新架構。
在這一點上,中美其實“站在同一片荒原上”,未來怎麼走,大家都在摸索。
回想一下人類的學習方式:從小到大,知識是一點一滴積累的,對同一個知識點的理解也是層層遞進的。相比之下,LLM 生成即“凍結”,缺失了進化的過程,所以它“知道”,但它不“理解”。
那麼,將知識的積累過程保留下來,會不會是通往 AGI 的一個方向?
如果 AI 能復現人類對某個現象的認識過程,是否就能理解其背後的原理,從而舉一反三?至少,可以將這個認識過程當作一種“元模式”記錄下來,在處理新問題時按部就班地套用。
當然,這個觀點也存在爭議。因為許多科學突破是“斷層式”的——先是天才的“靈光一閃”,後人再通過邏輯去填補證據。
不過,從人類的普適經驗來看,模擬知識的積累過程,肯定有助於 AI 達到人類智能的平均水準。我們不指望 AI 頓悟成愛因斯坦,但達到專家的水平是完全可期的。
這個過程可以從兩個角度來分析
一是知識的層級性,高階知識依賴並建立在前導知識(基礎概念、技能)之上。比如說,一個人學習流體力學前,需掌握微積分與線性代數。
二是學習的漸進性,對具體知識的理解和記憶,是一個從模糊、具體到清晰、抽象的動態過程。對於個人來說,對新概念的掌握,會從最初的生硬記憶,逐漸內化為可靈活運用的直覺。
針對第一個維度(層級性),Google 試圖將模型的知識結構化為不同時間尺度、相互巢狀的層級,提出了“巢狀學習”(Nested Learning)與記憶框架。(參見論文:https://abehrouz.github.io/files/NL.pdf)。
“巢狀學習”的核心是將一個複雜的AI模型,視為一系列相互巢狀的最佳化問題。簡單來說,模型的不同部分可以像人的不同記憶一樣,以不同的“速度”學習和更新。
簡單舉例,一般的LLM訓練,對於一個文字來說,可以理解成一個平面,從上而下,流式分佈。然後訓練過程相當於找出每個字之間的關係機率,因為處理窗口的關係,如果算到了後面的內容,往往與前面的文字關係就小了,計算時用的權重也就低了。如同一篇小說,即使作者費盡心機在結尾時回應了開頭處的一個梗,填了開始的一個坑,對於AI來說,也是拋媚眼給瞎子看。AI早就忘記了。
而Google的巢狀學習,則是對同一篇文章,除正常的訓練方式外,還對文章先在不同的層次上進行預處理。比如先做一個文章梗概,先過一遍文章,把所有作者預埋的“坑”提取出來……,這樣一篇文字就變成了n篇不同維度文字,然後在訓練時,這些文字都參與訓練,可以平行處理,只是訓練參數和訓練方法不同。能根據性質選擇不同精度和速度的計算,而且訓練出的成果是可以疊加的,不再是單一固定的權重檔案。
上面的圖就是一個例子,左邊是普通的深度學習訓練過程,而右邊則是巢狀學習的例子,你能看出對於同一個內容,根據進行多次訓練,只是廣度和精度各不相同。
此外,Google 的 ReasoningBank 記憶框架(相關論文:https://arxiv.org/abs/2509.25140 )則更進一步。它的思路是讓AI智能體從以往的成功與失敗經驗中,主動提煉出結構化的“記憶項”。每個“記憶項”包含策略標題、描述和推理內容,本質上是對低級經驗的抽象總結。當面對新任務時,AI會檢索並應用這些抽象原則來指導行動,這模擬了人類專家運用已有知識框架去解決新問題的過程。
針對第二個維度(漸進性),DeepSeek 在感知與推理兩個層面都展現了對人類思維模式的深度模擬。
首先在視覺感知層面,以 DeepSeek-OCR 為例,他們採用了一種獨特的“多解析度訓練”思路:不僅僅是對圖像進行簡單的向量化,而是試圖模擬人類的視覺認知過程——即 “從模糊到清晰” 的動態掃描。對同一張圖片(場景),模型會同時學習其低解析度的宏觀輪廓與高解析度的微觀細節(相關技術細節可參看此前的公眾號文章)。這種策略暗合了人類大腦處理視覺資訊的生物學模式:先建立全域印象,再填充局部細節。
不僅在感知上發力,DeepSeek 更試圖在推理層面重現人類的“反思”能力。
DeepSeek 不僅在基礎大模型上發力,向各個專家模型演進(如 DeepSeekMath-V2),更在某些領域嘗試模擬人類的“記憶狀態”。
在 2025 年 11 月 27 日剛剛發佈的 DeepSeekMath-V2(論文:https://arxiv.org/pdf/2511.22570 )中,DeepSeek 引入了突破性的 “自驗證”(Self-Verification) 機制。
這相當於讓 AI 進化出了“自我監考”的能力。傳統的模型像是一個只顧填答題卡的考生,只在乎最終答案是否命中;而 DeepSeekMath-V2 則像是一個嚴格的老師,它不僅檢查答案的對錯,更會一步步審視 解題過程(Process) 的邏輯鏈條。通過這種方式,模型不再是“蒙”對了一個答案,而是真正確信自己“理解”了這道題。這種從“結果導向”向“過程導向”的轉變,是 AI 邁向深度邏輯推理的關鍵一步。
DeepSeek 的“自驗證”機制構成了一個自我完善的智能閉環:它不僅能評估解題過程,更能主動生成推理步驟並對其驗證。這模仿了人類的元認知與自我學習能力。古人倡導“吾日三省吾身”,而 AI 則可實現瞬時、高頻的自我審視與迭代最佳化。如下圖(論文中的附圖)所示,隨著驗證次數(最高達7次)的增加,模型解決問題的能力顯著提升,充分體現了通過“反覆自學”實現能力進化的潛力。
雖然上述分別列舉了兩家公司的例子,但在技術演進的洪流中,它們並非孤立存在。Google 的巢狀學習涉及不同清晰度資料的處理,而 DeepSeek 的多專家系統(MoE)及多層次資料訓練,本質上也是在對知識進行結構化拆解。
從 Google 到 DeepSeek,我們正在看到一個趨勢越來越明確:
真正的智能,不是更大的模型,而是更“結構化”的學習過程。
未來的 AI,可能會具備:
這些能力加在一起,不是“下一代更大的 Transformer”,而是:一種能夠像人一樣“成長”的架構。
我們或許距離 AGI 仍有數個重要突破,但路徑正在變得越來越清晰:不是簡單堆算力、堆資料,而是讓模型獲得“理解知識如何生成”的能力。
或許,真正的智能不是一夜之間的奇蹟,而是一次又一次讓機器“重走人類認知之路”的漫長積累。而現在,我們正在走在這條路的最前面。 (亍雲旁觀)