2023 年初的那個冬天,當 ChatGPT 橫空出世,驚豔全球時,Google 看起來像是一個垂垂老矣的巨人。圖片 | 來自網路華爾街拋售股票,內部發佈“紅色程式碼”(Code Red),關於“搜尋已死”的訃告充斥著科技媒體的頭版,內部員工一邊調侃自己在“養老廠”,一邊焦慮。當時的金融和科技領域均不看好效率低下的搜尋業務然而,僅僅不到三年後的今天,戰局的風向正在發生微妙而劇烈的逆轉。當 OpenAI 為昂貴的算力帳單發愁,當整個行業因為 Nvidia GPU 的產能瓶頸而焦慮時,Google 卻憑藉 Gemini 模型展示了百萬級的長文字能力,並悄然建構了全球成本最低的 AI 推理基礎設施。對,是全球。資料顯示,自 Gemini 3 發佈以來的過去 6 周內,ChatGPT 的流量下降了 22%,7天平均訪問使用者數從約2.03億下降到約1.58億。這可能與假期流量回落有關,但Gemini的流量保持基本持平,而且目前已經達到ChatGPT的約40%。ChatGPT 與 Gemini流量對比而這場勝利的草蛇灰線,早在 2013 年就已經埋下——今天我們就要盤一下,Google最具遠見、也最瘋狂的兩筆賭註:一是自研晶片 TPU,二是收購 DeepMind。而連接這兩者的關鍵,則是 2023 年那場壯士斷腕般的組織變革。01 自研晶片TPU故事的起點,始於 2013 年Google內部的一次“數學恐慌”。彼時的Google坐擁全球最大的 CPU 資料中心。然而,工程傳奇 Jeff Dean 做了一個粗略的紙上演算:如果全球數億Android使用者每天只使用 3 分鐘的語音搜尋,Google現有的資料中心規模就需要翻倍。但在摩爾定律已現疲態的背景下,這在帳上根本行不通,因為僅電費和伺服器採購成本就能將Google的利潤吞噬殆盡。唯一的出路就是——改變計算架構。Google首席科學家 Jeff Dean於是,硬體負責人 Norm Jouppi 帶隊,在高度保密的狀態下,僅用 15 個月就完成了從設計到部署的急行軍。TPU(Tensor Processing Unit)誕生了。TPU v1 是一個極端的“偏才”,它砍掉了所有不需要的功能,專註解決一個問題,那就是——如何在有限的電力和預算下,跑模型(Inference)。深度學習(Deep Learning)聽起來高大上,但它在晶片內部干的最多的活其實是“矩陣乘法”。這就像你做一頓土豆主題的滿漢全席,雖然菜譜很複雜,但90%的時間其實都在切土豆絲(做簡單的乘法和加法)。CPU和GPU好比是博學的教授,雖然聰明但幹活“死板”,每切一刀都要跑一趟倉庫拿放土豆,時間全浪費在“跑路”(記憶體存取)上了;而TPU不用太聰明,它引入的“脈動陣列Systolic Arrays”就像是由 256 個切土豆工人排成的方陣——第一個人切一下,直接遞給身邊的第二個人,第二個人切完遞給第三個人……不需要頻繁跑倉庫就能被連續加工256次。正因為省去了大量無效的搬運時間,即使是2015年部署的 TPU v1,以 28nm 的老舊工藝和僅 40W 的功耗(就像一個燈泡),在推理性能上比當時輝達的旗艦 K80 GPU 快了 15-30 倍,能效更是高出 30-80 倍。這是Google的第一次隱秘勝利。TPU 在多層感知器MLP、時間循環神經網路LSTM、摺積神經網路CNN的計算效率上,顯著高於傳統的CPU和GPU也就是說,在外界還在搶購昂貴的 GPU 時,Google已經在用接近物料成本(BOM Cost)的價格,大規模部署自己的 AI 加速器。更關鍵的是,輝達的硬體毛利率高達 70% 以上,而Google自研 TPU 意味著它不需要繳納這筆昂貴的“過路費”。這為十年後,AI從“炫技”轉向“大規模工業化生產”時,Google擁有的極低邊際成本埋下了伏筆。02 最成功的投資 ——Deep Mind如果說造 TPU 是為瞭解決“算得快”的問題,那麼收購 DeepMind 就是為瞭解決“算什麼”的問題。差不多在同一時期(2014 年),Google擊敗 Facebook(Meta),以超過 6 億美元的天價收購了一家位於倫敦、沒有任何產品、只有十幾名員工的創業公司。站在今天看,如果沒有這筆收購,Google在 ChatGPT 的攻勢面前很可能會直接“猝死”。說回2014,當時,深度學習剛剛萌芽。Google內部雖然有 Jeff Dean 領導的Google Brain,但Google Brain的基因是“工程師文化”——他們想的是如何用 AI 最佳化搜尋排名、識別貓的視訊、提升廣告點選率。但DeepMind 的創始人Demis Hassabis不一樣,他從小就是一位天才,是前國際象棋神童,是一個神經科學家和遊戲設計師。他的願景與Google截然不同,甚至有些“瘋魔”:“解決智能,然後用它解決一切。”(Solve Intelligence, and then use it to solve everything else.)同為天才的拉里·佩奇(Larry Page)看懂了這一點——DeepMind 研究的不是某種“工程”,而是 通用人工智慧(AGI)。所以,從這個角度看,這筆收購的本質,是Google買斷了當時地球上最聰明的一群 AI 大腦。而且為了達成交易,Google甚至簽下了一份極其罕見的協議:成立“倫理委員會”,承諾DeepMind的技術永遠不用於軍事。這奠定了後來雙方長期“一國兩制”的基調。所以,我們看到收購後的前七年(2014-2021),DeepMind 實際上是Google供養在倫敦的“梵蒂岡”——神聖、高冷、且極其燒錢,要知道,DeepMind 長期處於虧損狀態(甚至一度單年虧損 6 億美元),而他們對Google的核心業務(廣告、雲、Android)幾乎沒有任何直接貢獻。好在這麼多錢砸下去還是能聽到個響的——2016 年,AlphaGo 擊敗李世石,宣告了深度強化學習(Deep Reinforcement Learning, RL)的勝利。可以這樣說,Google Brain 擅長“監督學習”(給資料打標籤,教AI 認圖,也是Meta花天價收購的Scale AI搞的那一套);而 DeepMind 擅長“強化學習”(讓AI在虛擬環境中自我博弈、自我進化)。請記住這一點:強化學習。因為這一技術路線的儲備,直接決定了後來 Gemini 能夠擁有強大的邏輯推理能力。03 組織合併 打通任督二脈現在,問題來了——為什麼Google擁有 DeepMind 和 Brain 兩大天團,還有自己的TPU,為什麼在 2022 年會被 OpenAI 打得措手不及?答案在於組織內耗。甚至可以說,Google在很長一段時間裡,是在“左右手互搏”——Google Brain(加州派):務實、工程導向,由 Jeff Dean 領導,他們發明了 Transformer,打造了 TensorFlow,致力於將 AI 塞進搜尋、翻譯和廣告裡賺大錢錢。DeepMind(倫敦派):學術、清高,由Demis Hassabis領導,他們追求 Nature 封面,致力於攻克圍棋(AlphaGo)和蛋白質折疊(AlphaFold),對商業化嗤之以鼻,每天想的是怎麼才能發《Nature》封面頭條。他,剛剛拿了諾貝爾獎,但去年公司虧損6000萬,英鎊……兩方不僅形而上的文化不一樣,形而下的“程式碼語言”都不一樣——Brain 團隊死守自己開發的 TensorFlow,儘管隨著版本迭代它日益臃腫;DeepMind 則嫌棄 TensorFlow,轉而擁抱更靈活、更適合科研的 JAX。目前AI領域主流的三種開發工具,各有其特點想像一下,一家公司的兩支頂級特種部隊,一支說英語,一支說法語,槍支彈藥(模型架構)也不通用,而且時不時兩邊互懟一下,這導致了嚴重的資源浪費。所以,當OpenAI的Ilya Sutskever(前Google員工)帶領團隊在 GPT 的道路上狂飆突進時,Google的兩支團隊還在為爭奪 TPU 的配額而明爭暗鬥。在和平時期,這種“賽馬機制”是創新的溫床,但在戰時,就是致命的拖累。Ilya Sutskever 於2015年從Google離職後加入OpenAI,成為其聯合創始人兼首席科學家,直至他2024年離開OpenAI2023 年 4 月,那是Google最痛苦的時刻,也是決定生死的轉折點。在 ChatGPT 發佈的第 140 天,Google終於按下了一個遲到多年的核按鈕:強制合併Google Brain與DeepMind,組建Google DeepMind (GDM),Jeff Dean 轉任首席科學家,不再負責行政管理;權杖交到了 Demis Hassabis 手中。這代表了Google高層極其冷酷的決斷:為了生存,必須把命脈交給更有野心的“倫敦派”。Google Brain 與 Deepmind合併,標誌著Google與OpenAI展開終極對決這場組織合併,終於打通了任督二脈,因為它不僅僅是程式碼的統一(Google放棄了 TensorFlow,全面轉向 JAX + XLA)更是工程主義”與“科學主義”的握手言和:Brain 提供了“身體”(極致的架構力):作為 Transformer 的發明者,Brain 團隊擁有地表最強的工程化能力。他們造出了最強壯的軀殼——他們知道如何建構兆參數的模型架構,並讓它在數萬張 TPU 上穩定運行數周而不崩潰。DeepMind 提供了“靈魂”(基於 RL 的學習法):這是被嚴重低估的一點。ChatGPT 的核心壁壘不僅僅是預訓練,更是 RLHF(基於人類反饋的強化學習)。還記得 AlphaGo 嗎?DeepMind 在圍棋上鑽研了十年的強化學習(RL)終於找到了最大的用武之地。他們將 AlphaGo 中用於“自我博弈”和“策略最佳化”的演算法,遷移到了大語言模型的後訓練階段(Post-training)。Google Gemini 1.5 發佈時,長上下文是模型的亮點之一於是很快在2024 年,Gemini 1.5 發佈。這是一個震撼業界的時刻:當時GPT-4的命門在於處理不了長文字(只能處理幾萬字),Gemini瞄準的正是這一點,一舉將上下文窗口(Context Window)拉升到了 100 萬 token,讓Gemini可以一口氣吃透《戰爭與和平》、一小時的視訊或整個程式碼庫。Google Gemini 1.5 的100萬Tokens的上下文窗口對同時期的其他大模型產品形成了壓倒性優勢04 戰時獨裁 降維打擊很多人以為這只是演算法的最佳化,其實這是Google積累了10年的、軟硬一體架構的降維打擊。在硬體端,Google在 TPU v4/v5 中祭出了大殺器:OCS(Optical Circuit Switches),這是一套由 MEMS 反射鏡組成的物理光路交換系統,具體技術咱不需要懂,只需要知道這給Google帶來了毀滅性的優勢:極低的延遲和無限的靈活性,這也是支援百萬級長文字的物理基礎。Google 建設的算力中心有了強大的硬體,還需要軟體來駕馭。OpenAI 在 GPU 上最佳化性能,往往需要工程師手搓 CUDA Kernel,難度極大。但Google的JAX配合 XLA(加速線性代數編譯器),讓研究員只需要寫出數學公式(Python 程式碼),XLA 編譯器會自動將其“翻譯”成 TPU 的機器碼,並利用 GSPMD(通用分片器) 自動將模型切分到數千個晶片上。這就是為什麼Google能在長文字上率先突破:因為他們的編譯器能比人類更高效地指揮光路和晶片,將百萬token的計算完美地平鋪在整個資料中心。話說回來,如果沒有做“統一”這一步,Gemini絕無可能誕生,Google也不可能翻盤。但我們不禁要問:為什麼像Google這樣一家擁有 18 萬員工、以官僚主義和行動緩慢著稱的巨頭,能如此迅速地完成這樣劇烈的、甚至可以說有些血腥的組織手術?首先,Google是的確害怕了,恐懼永遠都是改變的第一動力。平時Google的官僚做派,是因為核心業務太穩固了。但在 2022 年底,Google第一次看到了“死神”的影子。如果使用者不再點選藍色連結,而是直接問 AI,Google賴以生存的商業模式將瞬間歸零。這種對生存的絕對恐懼擊穿了所有的部門牆和審批流。更關鍵的是——“創始人模式”回歸。這是外界鮮少提及的關鍵。平時Google由職業經理人 Sundar Pichai 管理,他的風格是求穩與平衡,但要強行合併兩個互相看不順眼的山頭,職業經理人做不到,也不敢做。但創始人拉里·佩奇(Larry Page)和謝爾蓋·布林(Sergey Brin)回來了。兩位Google創始人拉里·佩奇(Larry Page)和謝爾蓋·布林(Sergey Brin)據報導,布林甚至親自去總部寫程式碼,其實不管公司發展到什麼階段,只有創始人才擁有“凌駕於 KPI 之上”的道德權威,可以直接下達命令打破利益格局。這種“戰時獨裁”,是Google能迅速掉頭的核心原因。最近謝爾蓋·布林(Sergey Brin)在回母校史丹佛演講中復盤了Google此段在AI比拚中的危機經歷視訊連結:https://www.youtube.com/watch?v=0nlNX94FcUE05 中局?終局?進入 2026 年,AI 的競爭已經變味了。如果說前兩年是比拚“誰的模型更聰明”(智力競賽),那麼未來三年將比拚“誰的推理更便宜”(價格戰),商業的本質回歸到了“電力公用事業”的邏輯。在Google的算力中心佈局規劃中,“太陽能+儲能+資料中心”模式展示了其改變整個行業的能源邏輯而這,正是Google等待已久的獵殺時刻。我們看看 OpenAI 目前的處境:它像是一個住在豪宅裡的高級租客,軟體上,依賴 Microsoft Azure;硬體上,依賴 Nvidia GPU。結果就是每一筆收入,都要被微軟抽成,還要支付給輝達高昂的硬體溢價。OpenAI 的毛利天花板被牢牢鎖死。再看看Google,它是這個星球上極少數擁有“全端主權”的玩家:從最底層的沙子(自研 TPU 晶片),到連接晶片的光纖(Jupiter 網路),再到編譯器(JAX)、模型(Gemini),直至最頂層的使用者入口(Search/Android),Google實現了從原子到位元的完美閉環。Google的TPU產品也在不斷迭代更新,最新的產品擁有更強大計算能力和更高的效率據 SemiAnalysis 估算,TPU 的單位總擁有成本(TCO)比同代 GPU 低 4-10 倍。這意味著,Google完全可以將 AI 推理的價格壓低到 OpenAI 的成本線以下,還依然有大把的利可圖。而且,隨著 AI應用滲透進生產力核心,使用者開始上傳整本幾百頁的財報、丟進去一小時的高畫質視訊會議記錄。而這種“長文字推理”是算力的黑洞,推理成本是隨著上下文長度呈指數級爆炸的,如果使用昂貴的 H100 GPU 來做這件事,那無異於“燒錢取暖”。但Google卻可以憑藉 TPU 大記憶體優勢和 OCS 的光互連,可以將這種“重推理”任務變成一種極其廉價的通用服務。這或許是Google處心積慮設下的一個局:它可以毫無壓力地培養使用者使用“百萬級 Token”的習慣,因為它是唯一的發電廠(TPU)和電網(光互連)擁有者。當 AI 真正變成像自來水一樣的基礎設施時,只有掌握水源和管道的人,才擁有最終的定價權。06 長期主義的勝利回望 2013/2014 年,當 Jeff Dean 在那張紙上寫下 TPU 的構想,當拉里·佩奇拍板買下 DeepMind 時,他們可能沒想到過程會如此曲折。Google確實犯過大錯:它曾傲慢、它曾內耗、它曾像個猶豫不決的官僚。在 2022 年被 ChatGPT 突襲的那個至暗時刻,這些錯誤差點讓這家兆帝國崩塌。但科技行業的競爭,從來不是百米衝刺,而是一場馬拉松。OpenAI 是一支驚才絕豔的特種部隊,憑藉先發優勢和微軟的裝備支援,打贏了登陸戰(ChatGPT)。但當戰爭進入相持階段,演變成拼後勤、拼工業體系、拼成本控制的總體戰時,Google這台龐大的戰爭機器終於顯露出了它的猙獰獠牙。Google的護城河,從來不是某個神奇的演算法——因為演算法總會擴散,模型總會過時。真正的護城河,是那些深埋海底的自有光纖,是那些日夜轟鳴的脈動陣列晶片,是那套統一意志的 JAX 軟體棧,以及十年前那兩次不計成本、看似瘋狂的下注。這給所有科技公司帶來了一個殘酷的啟示:在技術變革的浪潮中,真正的壁壘無法通過“買買買”建立,但唯有在那個無人問津的“前夜”,敢於在底層基礎設施與基礎科學上做最笨重、最昂貴的投入,並擁有在危機時刻自我革命的組織勇氣,才能在十年後的風暴中,笑到最後。 (TOP創新區研究院)