EMIB-T脫穎而出。英特爾在電子元件技術大會(ECTC) 上揭露了多項晶片封裝技術突破,概述了多種新型晶片封裝技術的優勢。我們採訪了英特爾院士兼基板封裝開發副總裁Rahul Manepalli 博士,深入瞭解了其中三種新型封裝技術:EMIB-T,用於提升晶片封裝尺寸和供電能力,以支援HBM4/4e 等新技術;一種全新的分散式散熱器設計;以及一種全新的快速鍵結技術,可提高可靠性和良率,並支援更精細的晶片間連接。英特爾也參與了此次大會上發表的另外17 篇新論文的發表。圖片來源:Tom's Hardware英特爾代工廠旨在利用尖端製程節點技術,為英特爾內部和外部公司生產晶片。然而,現代處理器越來越多地採用複雜的異構設計,將多種類型的運算和記憶體元件整合到單一晶片封裝中,從而提升效能、成本和能源效率。這些晶片設計依賴日益複雜的先進封裝技術,而這些技術是異質設計的基石。因此,為了與台積電等競爭對手保持同步,英特爾必須持續發展。英特爾的新型EMIB-T 最初 於上個月的英特爾Direct Connect 活動上發佈,它將矽通孔(TSV) 融入其已經廣泛使用的EMIB 技術中——一種嵌入封裝基板的矽橋,可在晶片/裸片之間提供通訊和電源管道。EMIB 的下一代技術提升了關鍵的封裝供電效率指標,並加快了晶片間通訊速度。 EMIB-T 可用於更有效地為計算和記憶體元件供電——標準EMIB 連接由於採用懸臂式供電路徑而存在高電壓降問題,而EMIB-T 利用TSV 從晶片封裝底部通過TSV 橋接晶片進行供電,從而實現了直接、低電阻的供電路徑,這對於HBM4/4e 整合至關重要。當然,TSV 的使用也提升了晶片間的通訊頻寬,從而能夠整合高速HBM4/4e 記憶體封裝,並使用UCIe-A 互連技術,將資料傳輸速率提升至32 Gb/s 或更高。透過同一介面傳輸電源和訊號會在訊號路徑中引入“雜訊”,但英特爾在橋接器中整合了高功率MIM 電容器,有助於確保通訊訊號的一致性。EMIB-T 還能實現更大的晶片封裝尺寸,達到120x180 毫米,並在單一大型晶片封裝中支援超過38 個橋接器和超過12 個矩形大小的晶片。此外,第一代EMIB 實現了55 微米的凸塊間距(這是一個關鍵的互連密度指標),而第二代EMIB 則縮小至45 微米間距。英特爾的論文展示了一種間距為45 微米的EMIB-T 設計,但指出新技術支援「遠低於」45 微米的間距,並表示將很快支援35 微米間距,並且25 微米間距的間距正在開發中。英特爾尚未公佈皮焦/位元(pJ/bit) 的功率效率指標。 EMIB-T 也相容於有機或玻璃基板,其中玻璃基板是英特爾未來晶片封裝業務的關鍵策略方向。人工智慧革命正在將晶片封裝尺寸推向新的高度,隨之而來的是功耗的增加,帶來了棘手的散熱挑戰。英特爾也揭露了一種全新的分解式散熱器技術,該技術將散熱器分解成平板和加強筋,以改善散熱器與位於散熱器和底層晶片之間的熱介面材料(TIM) 之間的耦合。除其他優勢外,該技術還有助於將TIM 耦合焊料中的空隙減少25%。英特爾的圖示展示了一個整合微通道的散熱器,液體可直接通過IHS冷卻處理器,就像我們在Direct Connect活動上看到的一樣。雖然論文重點討論了將散熱器拆分成多個部分的影響,但這項技術可以冷卻TDP高達1000W的處理器封裝,凸顯了英特爾正在從多個角度解決晶片冷卻問題。英特爾在其伺服器和消費產品中都採用了熱壓黏合技術;然而,它現在已經開發出一種專門針對大型封裝基板的新型熱壓黏合工藝,有助於克服黏合過程中的晶片和基板翹曲。這項新技術最大限度地減少了鍵合過程中封裝基板和晶片之間的熱差,從而提高了良率和可靠性指標,並實現了比目前大批次生產中更大的晶片封裝。它還能實現更精細的EMIB連接間距,有助於從EMIB-T技術中搾取更高的密度。擁有一套完善且具競爭力的封裝技術對於英特爾代工廠至關重要,因為它致力於為客戶提供儘可能全面的晶片生產選擇。先進的晶片封裝技術使客戶能夠將來自多家供應商的不同類型的晶片(例如CPU、GPU 和記憶體)整合到單一封裝中,從而降低所有元件完全過渡到英特爾製程節點的風險。事實上,英特爾也為完全不使用任何英特爾製造元件的晶片提供封裝服務,這有助於其晶片製造服務與潛在的新客戶建立關係。晶片封裝也已成為英特爾外部客戶的領先服務之一,目前這些客戶包括AWS、思科等產業巨頭,以及美國政府的RAMP-C和SHIP專案。這些封裝合約是英特爾代工廠創造收入的最快途徑,因為生產採用尖端製程節點的晶片需要更長的交付周期。(半導體產業觀察)