Vera Rubin晶片已完成實驗室測試,預計明年此時或更早量產;預計出貨2000萬塊Blackwell晶片,Blackwell和Rubin晶片合計銷售額5000億美元;輝達將與諾基亞推出Aerial RAN Computer助力6G網路轉型;輝達NVQLink技術連接量子計算與GPU系統,已獲17家量子處理器製造商支援;輝達聯手甲骨文打造配備10萬塊Blackwell GPU的美能源部最大AI超算;輝達支援AI工廠作業系統的處理器BlueField-4預計明年推出早期版本,作為Vera Rubin的部分;輝達與CrowdStrike、Palantir、禮來分別合作;輝達自動駕駛開發平台DRIVE AGX Hyperion 10助Uber2027年起部署Robotaxi車隊,首批提供這些車的製造商包括Stellantis。
美東時間28日周二,輝達CEO黃仁勳在華盛頓舉行的今年第二次GTC大會上發表主體演講,重點涵蓋6G、AI、量子計算和機器人領域的技術突破。黃仁勳在演講中強調,隨著摩爾定律失效,加速計算和GPU技術成為推動技術進步的核心動力。
在AI與6G技術結合方面,輝達宣佈與諾基亞達成戰略合作,將投資10億美元認購諾基亞股份,共同推進AI原生6G網路平台。超算方面,輝達推出融合AI超算和量子計算的NVQLink技術,連接量子處理器與GPU超級電腦,已獲得17家量子計算公司支援。輝達還宣佈,與美國能源部合作建造該部門最大的AI超算。AI工廠方面,輝達將推出支援AI工廠操作的處理器Bluefield-4。
此外,輝達給自動駕駛計程車服務Robotaxi的熱潮又添一把火,宣佈與共享用車鼻祖Uber以及克萊斯勒母公司Stellantis合作。Uber計畫從2027年起部署10萬輛基於輝達技術的Robotaxi服務汽車。
輝達還與AI明星Palantir以及醫藥巨頭禮來分別達成合作,將其GPU計算能力與企業資料平台和製藥研發深度整合,旨在推動AI從概念走向實際應用。這兩項合作分別針對企業營運智能和藥物研發,標誌著AI技術在複雜行業場景中的商業化處理程序加速。
黃仁勳表示:“AI是我們這個時代最強大的技術,而科學是其最偉大的前沿。” 周二官宣的合作標誌著,輝達從晶片製造商向全端AI基礎設施供應商的戰略轉型。
黃仁勳在現場首次展示了輝達下一代Vera Rubin超級GPU的實物。黃仁勳表示,Rubin GPU已完成實驗室測試,首批樣品已從台積電送回實驗室,預計明年此時或更早量產。Vera Rubin是採用無纜連接設計的第三代NVLink 72機架級超算。單機架算力達100 Petaflops,是初代DGX-1性能的100倍,意味著過去需要25個機架完成的工作,現在一個Vera Rubin即可實現。
黃仁勳在演講中明確反駁了AI泡沫說,稱:“我不認為我們處於AI泡沫之中。我們正在使用所有這些不同的AI模型——我們在使用大量服務,並樂於為此付費。” 他的核心論點是,AI模型現在已經足夠強大,客戶願意為其付費,這反過來將證明昂貴的計算基礎設施建設是合理的。
Vera Rubin計算托盤的推理性能可達440 Petaflops。輝達透露,其底部配備了8個Rubin CPX GPU、BlueField-4資料處理器、兩顆Vera CPU以及4個Rubin封裝,總共8個GPU全部實現了無纜連接和全液冷設計。
Rubin GPU採用兩個Reticle尺寸晶片,FP4性能最高可達50 Petaflops,配備288GB下一代HBM4記憶體。Vera CPU則採用定製化Arm架構,擁有88個核心、176個執行緒,NVLINK-C2C互連速度最高可達1.8 TB/s。
系統配備的NVLink交換機可讓所有GPU同步傳輸資料,乙太網路交換機Spectrum-X確保處理器同時通訊而不擁堵。結合Quantum交換機,整個系統完全相容InfiniBand、Quantum和Spectrum Ethernet。
輝達Vera Rubin NVL144平台的FP4推理性能達到3.6 Exaflops,FP8訓練能力為1.2 Exaflops,較GB300 NVL72提升3.3倍。
HBM4記憶體速度達到13 TB/s,快速記憶體容量為75TB,較GB300提升60%。NVLINK和CX9能力分別提升至2倍,速率最高可達260 TB/s和28.8 TB/s。
每個Rubin GPU採用8個HBM4記憶體站點和兩個Reticle尺寸的GPU裸片設計。主機板總共配備32個LPDDR系統記憶體站點,與Rubin GPU上的HBM4記憶體協同工作,每個晶片周圍佈置了大量電源電路。
第二代平台Rubin Ultra將於2027年下半年發佈,NVL系統規模從144擴展至576。Rubin Ultra GPU採用四個Reticle尺寸晶片,FP4性能最高可達100 Petaflops,HBM4e總容量達到1TB,分佈在16個HBM站點。
Rubin Ultra NVL576平台的FP4推理性能將達到15 Exaflops,FP8訓練能力為5 Exaflops,較GB300 NVL72提升14倍。HBM4記憶體速度達到4.6 PB/s,快速記憶體容量為365TB,較GB300提升8倍。NVLINK和CX9能力分別提升12倍和8倍,速率最高可達1.5 PB/s和115.2 TB/s。
該平台的CPU架構與Vera Rubin保持一致,繼續採用88核心Vera CPU配置。
黃仁勳透露,輝達目前最快的AI晶片Blackwell GPU已在亞利桑那州實現全面生產。這意味著,之前僅在台灣生產的Blackwell晶片首次可以在美國製造。
黃仁勳披露了輝達晶片出貨的驚人資料。他表示,輝達預計將出貨2000萬塊Blackwell晶片。相比之下,上一代產品Hopper架構晶片在整個生命周期內僅出貨了400萬塊。
黃仁勳還表示,過去四個季度已出貨600萬塊Blackwell GPU,需求依然強勁。輝達預計,Blackwell和明年推出的Rubin晶片將合計帶來五個季度5000億美元的GPU銷售額。
本月早些時候,輝達和台積電宣佈首批Blackwell晶圓已在亞利桑那州鳳凰城的工廠生產。輝達在一段視訊中表示,基於Blackwell的系統現在也將在美國組裝。
黃仁勳介紹,輝達將與諾基亞攜手推出Aerial RAN Computer(ARC),助力6G網路轉型。輝達與諾基亞將為6G通訊技術開拓AI平台。
6G 與 AI 如何融合?除了AI學習和提升6G頻譜效率之外,我們還將看到AI加持的無線接入網路(RAN)產品、即“AI on RAN”。這意味著,在目前的網際網路狀態下,很多資料都在亞馬遜雲服務平台AWS上運行,但輝達要在6G連接之上建構一個雲端運算平台。這展現了超高速 AI 的潛力,它可以為自動駕駛汽車等技術提供動力。
輝達和諾基亞周二宣佈建立戰略合作夥伴關係,將輝達驅動的商用級AI-RAN產品加入到諾基亞的RAN產品組合中,使通訊服務提供商能夠在輝達平台推出AI 原生的5G-Advanced 和6G網路。
輝達將推出面向6G網路的Aerial RAN Computer Pro計算平台,諾基亞將在此基礎上擴展其RAN產品組合,推出新的AI-RAN產品。輝達還將以每股6.01美元的認購價,對諾基亞進行10億美元的股權投資。
分析機構Omdia預測,到2030年,AI-RAN市場規模預計將累計超過2000億美元。輝達和諾基亞的合作將提供分佈式邊緣AI推理能力,為電信營運商開闢新的高增長領域。
T-Mobile美國公司將同諾基亞和輝達合作,推動AI-RAN技術的測試和開發,將技術整合到其6G開發流程中。試驗預計於2026年開始,重點驗證客戶的性能和效率提升。該技術將支援自動駕駛汽車、無人機、增強現實和虛擬現實眼鏡等AI原生裝置。
目前,各種量子計算技術雖然性能強大,但對環境噪聲敏感,應用範圍有限。基於GPU的超級電腦正是因此有用武之地,它可以減輕量子處理器的負擔。黃仁勳周二提到,輝達基於旗下開源量子開發平台CUDA-Q核心建構了開源系統架構NVQLink。
黃仁勳表示,他預計,除了新技術之外,量子計算還需要傳統處理器的支援,輝達將幫助實現這一目標。“我們現在意識到,將量子電腦直接連接到 GPU 超級電腦至關重要。這就是計算的未來量子化。”
NVQLink是將量子處理器與GPU和CPU連接起來的新型高速互連技術。它並非要取代量子電腦,而是要和後者共同加快量子計算的速度。
黃仁勳說,NVQLink技術將有助於糾錯,同時校準那些AI 演算法應該在GPU和量子處理器上使用。他透露,已有17家量子計算公司承諾將支援NVQLink。“業界的支援令人難以置信。量子計算不會取代傳統系統,它們將協同工作。”
“它(NVQLink)不僅能對今天的量子位元進行糾錯,還能對未來的量子位元進行糾錯。我們將把這些量子電腦的規模從現在的數百個量子位元擴展到數萬個量子位元,甚至未來的數十萬個量子位元。”
輝達稱,NVQLink技術已獲得17家量子處理器製造商和5家控製器製造商的支援,包括Alice & Bob、Atom Computing、IonQ、IQM Quantum Computers、Quantinuum、Rigetti等公司。美國能源部領導的9個國家實驗室將使用NVQLink推動量子計算突破,包括布魯克海文國家實驗室、費米實驗室、洛斯阿拉莫斯國家實驗室(LANL)等。
輝達表示,開發人員可以通過CUDA-Q軟體平台訪問NVQLink,建立和測試無縫呼叫CPU、GPU和量子處理器的應用程式。
黃仁勳稱,輝達將與美國能源部合作,打造七台新的超級電腦。它們將分別部署在能源部旗下的阿貢國家實驗室(ANL)和洛斯阿拉莫斯國家實驗室(LANL)。
輝達宣佈與甲骨文合作,為美國能源部建造該部門最大的AI超級電腦Solstice系統,該系統將創紀錄地配備10萬塊輝達Blackwell GPU。另一套名為Equinox的系統將包含1萬個Blackwell GPU,預計於2026年上半年投入使用。
兩套系統均通過輝達網路互聯,總計提供2200 exaflops的AI性能。這些超級電腦將使科學家和研究人員能夠使用輝達Megatron-Core庫開發和訓練新的前沿模型和AI推理模型,並使用TensorRT推理軟體堆疊進行擴展。
能源部長Chris Wright表示:"維護美國在高性能計算領域的領導地位,需要我們搭建通向下一個計算時代的橋樑:加速量子超級計算。我們國家實驗室、初創公司和輝達等行業合作夥伴之間的深度合作對這一使命至關重要。"
阿貢國家實驗室主任Paul K. Kearns表示,這些系統將與能源部前沿實驗設施(如先進光子源)無縫連接,使科學家能夠通過科學發現應對國家最緊迫的挑戰。
黃仁勳認為,代理式AI不再只是一種工具,而是人們所有工作的助手。AI帶來的“機會不勝列舉。” 輝達的計畫是建造專用於AI的工廠,裡面堆滿晶片。
輝達周二當天宣佈,推出支援AI工廠作業系統的處理器Bluefield-4。
輝達的BlueField-4資料處理單元支援800Gb/s吞吐量,為千兆級AI基礎設施提供突破性加速。該平台結合輝達Grace CPU和ConnectX-9網路技術,計算能力是前代BlueField-3的6倍,可支援的AI工廠規模較BlueField-3擴大3倍。
BlueField-4專為新一類AI儲存平台設計,為AI資料管道的高效資料處理和大規模突破性性能奠定基礎。該平台支援多租戶網路、快速資料訪問、AI執行階段安全和雲彈性,原生支援輝達DOCA微服務。
輝達稱,多家行業領頭羊計畫採用BlueField-4技術。其中,伺服器和儲存領域的公司包括思科、DDN、戴爾科技、HPE、IBM、聯想、Supermicro、VAST Data和WEKA。網路安全領域企業包括Armis、Check Point、思科、F5、Forescout、Palo Alto Networks和Trend Micro。
此外,雲和AI服務商如Akamai、CoreWeave、Crusoe、Lambda、甲骨文、Together.ai和xAI正基於輝達DOCA微服務建構解決方案,加速多租戶網路、提升資料移動速度並增強AI工廠和超級計算雲的安全性。
輝達BlueField-4預計將於2026年作為Vera Rubin平台的一部分推出早期版本。
黃仁勳稱,輝達將與網路安全公司CrowdStrike在AI網路安全模型方面進行合作。
輝達宣佈與CrowdStrike建立戰略合作,在CrowdStrike Falcon XDR平台上提供輝達AI計算服務。該合作將Falcon平台資料與輝達GPU最佳化的AI管道和軟體(包括新的輝達NIM微服務)相結合,使客戶能夠建立定製化安全生成式AI模型。
根據2024年CrowdStrike全球威脅報告,平均突破時間已降至62分鐘,最快記錄的攻擊僅略超過2分鐘。隨著現代攻擊速度更快、更複雜,組織需要AI驅動的安全技術來獲得必要的速度和自動化能力。
黃仁勳表示:"網路安全本質上是一個資料問題——企業能夠處理的資料越多,就能檢測和處理的事件越多。將輝達加速計算和生成式AI與CrowdStrike網路安全結合,可以為企業提供前所未有的威脅可見性。"
CrowdStrike將利用輝達加速計算、輝達Morpheus和NIM微服務,將定製LLM驅動的應用程式引入企業。結合Falcon平台的獨特上下文資料,客戶將能夠解決特定領域的新用例,包括處理PB級日誌以改進威脅搜尋、檢測供應鏈攻擊、識別使用者行為異常,以及主動防禦新興漏洞。
黃仁勳介紹,輝達的端對端自動駕駛平台DRIVE Hyperion已準備好推出提供Robotaxi服務的汽車。包括Stellantis、Lucid 和梅賽德斯-奔馳在內的全球汽車製造商將利用輝達的新技術平台DRIVE AGX Hyperion 10 架構加速開發自動駕駛技術。
輝達宣佈與Uber建立合作關係,使用新一代輝達DRIVE AGX Hyperion 10自動駕駛開發平台和DRIVE AV軟體,擴展全球最大的L4級行動網路。輝達將支援Uber,從2027年開始逐步將其全球自動駕駛車隊規模擴大至10萬輛。
DRIVE AGX Hyperion 10是一個參考級生產電腦和感測器架構,使任何車輛都能達到L4級準備狀態。該平台使汽車製造商能夠建構配備經過驗證的硬體和感測器的汽車、卡車和貨車,可以託管任何相容的自動駕駛軟體。
黃仁勳表示:"無人駕駛計程車標誌著全球交通轉型的開始——使交通更安全、更清潔、更高效。我們與Uber共同為整個行業建立了一個框架,以大規模部署自動駕駛車隊。"Uber CEO Dara Khosrowshahi表示:"輝達是AI時代的支柱,現在正充分利用這一創新,以巨大規模釋放L4自動駕駛能力。"
Stellantis正在開發AV-Ready平台,專門最佳化以支援L4級能力並滿足無人駕駛計程車要求。這些平台將整合輝達全端AI技術,進一步擴展與Uber全球移動生態系統的連接性。
Uber稱,Stellantis將成為首批提供Robotaxi汽車的製造商之一,這些製造商將為Uber在美國和國際的業務提供至少5000輛輝達驅動的Robotaxi車。Uber將負責車輛的端到端車隊營運,包括遠端協助、充電、清潔、維護和客戶支援。
Stellantis稱,將與富士康在硬體和系統整合方面展開合作,生產計畫定於2028年啟動。首先在美國與Uber合作開展營運。Stellantis 表示,預計未來幾年試點項目和測試將逐步展開。
Lucid正在為其下一代乘用車推進L4級自動駕駛能力,在DRIVE Hyperion平台上使用全端輝達AV軟體,向客戶交付首批L4級自動駕駛汽車。梅賽德斯-奔馳正在測試基於其專有作業系統MB.OS和DRIVE AGX Hyperion的未來合作,新款S級車型將提供卓越的L4級豪華駕乘體驗。
輝達和Uber將繼續支援和加速在輝達DRIVE L4級平台上開發軟體堆疊的全球合作夥伴,包括Avride、May Mobility、Momenta、Nuro、Pony.ai、Wayve和WeRide。在卡車運輸領域,Aurora、沃爾沃自動駕駛解決方案和Waabi正在開發由輝達DRIVE平台驅動的L4級自動駕駛卡車。
輝達與Palantir的合作核心是將輝達的GPU加速計算、開源模型和資料處理能力整合到Palantir AI平台(AIP)的Ontology系統中。Ontology通過將複雜資料和邏輯組織成互聯的虛擬對象、連結和動作,建立企業的數字副本,為AI驅動的業務流程自動化提供基礎。
黃仁勳表示:"Palantir和輝達有著共同的願景:將AI付諸行動,把企業資料轉化為決策智能。通過結合Palantir強大的AI驅動平台與輝達CUDA-X加速計算和Nemotron開源AI模型,我們正在打造下一代引擎,為運行全球最複雜工業和營運管線的AI專業化應用和代理提供動力。"
技術層面,客戶可通過Ontology使用輝達CUDA-X資料科學庫進行資料處理,配合輝達加速計算,為複雜的業務關鍵工作流驅動即時AI決策。輝達AI企業平台(包括cuOpt決策最佳化軟體)將支援企業進行動態供應鏈管理。輝達Nemotron推理模型和NeMo Retriever開源模型將幫助企業快速建構由Ontology提供資訊的AI代理。
Palantir聯合創始人兼CEO Alex Karp表示:"Palantir專注於部署能為客戶立即帶來非對稱價值的AI。我們很榮幸與輝達合作,將我們的AI驅動決策智能系統與全球最先進的AI基礎設施融合。"
零售商Lowe's成為首批採用Palantir和輝達整合技術堆疊的企業之一,正在建立其全球供應鏈網路的數字副本,以實現動態和持續的AI最佳化。該技術旨在提升供應鏈敏捷性,同時增強成本節約和客戶滿意度。
Lowe's首席數字和資訊官Seemantini Godbole表示:"現代供應鏈是極其複雜的動態系統,AI對於幫助Lowe's在不斷變化的條件下快速適應和最佳化至關重要。即使是需求的微小變化也會在全球網路中產生連鎖反應。通過將Palantir技術與輝達AI相結合,Lowe's正在重新構想零售物流,使我們能夠每天更好地服務客戶。"
輝達和Palantir還計畫將輝達Blackwell架構引入Palantir AIP,以加速從資料處理和分析到模型開發、微調再到生產AI的端到端AI管線。企業將能夠在輝達AI工廠中運行AIP以實現最佳化加速。Palantir AIP還將在輝達新推出的政府AI工廠參考設計中獲得支援。
禮來與輝達的合作將建設一台由超過1000塊Blackwell Ultra GPU驅動的超級電腦,這些晶片將通過統一的高速網路連線。該超級電腦將為AI工廠提供動力,這是一個專門的計算基礎設施,將大規模開發、訓練和部署用於藥物發現和開發的AI模型。
禮來首席資訊和數字官Diogo Rau表示,從首次對人類進行藥物試驗到產品上市,通常平均需要約10年時間。該公司預計將在12月完成超級電腦和AI工廠的建設,明年1月上線。但這些新工具可能要到2030年末才能為禮來及其他製藥商的業務帶來顯著回報。Rau說:“我們現在討論的用這種算力發現的東西,真正會在2030年看到這些益處。"
禮來首席AI官Thomas Fuchs表示:"這確實是一種新型科學儀器。對生物學家來說,它就像一台巨大的顯微鏡。它真正讓我們能夠以如此龐大的規模做到以前無法做到的事情。"科學家將能夠在數百萬次實驗中訓練AI模型來測試潛在藥物,"極大地擴展藥物發現的範圍和複雜性"。
雖然發現新藥並非這些新工具的唯一重點,但Rau表示這“是最大的機會所在”,“我們希望能夠發現僅靠人類永遠無法發現的新分子。”
多個AI模型將在Lilly TuneLab上提供,這是一個AI和機器學習平台,允許生物技術公司訪問禮來基於其多年專有研究訓練的藥物發現模型。這些資料價值10億美元。禮來於去年9月推出該平台,旨在擴大整個行業對藥物發現工具的訪問。
Rau指出,作為訪問AI模型的交換,生物技術公司需要貢獻部分自己的研究和資料,幫助訓練這些模型。TuneLab平台採用所謂的聯邦學習,這意味著,生物技術公司可以利用禮來的AI模型,雙方無需直接共享資料。
禮來還計畫使用超級電腦縮短藥物開發時間,幫助更快地將治療方法送到患者手中。禮來表示,新的科學AI代理可以支援研究人員,先進的醫學成像可以讓科學家更清晰地瞭解疾病如何進展,並幫助他們開發用於個性化護理的新生物標誌物。 (invest wallstreet)