【新智元導讀】Andrej Karpathy與Claude Code負責人Boris Cherny展開了一場關於程式設計未來的終極對談。面對AI接管100%程式碼編寫的現狀,Karpathy坦言人類正處於「腦萎縮」與能力進化的十字路口。本文深度解析了從Software 2.0到Agentic Coding的範式轉移,揭示了在Opus 4.5等強力模型加持下,程式設計師如何從「搬磚工」進化為「指揮官」,以及不僅要面對效率的飛躍,更要警惕「垃圾程式碼末日」的隱憂。2026年的開篇,科技圈被一場關於「程式設計本質」的深度對話引爆。這場對話的雙方,一位是特斯拉前AI總監、OpenAI創始成員 Andrej Karpathy,他是「Software 2.0」概念的提出者,一直站在程式設計範式轉移的最前沿;另一位是 Claude Code 的締造者、Anthropic 的核心人物 Boris Cherny,他正在親手打造終結傳統程式設計的工具。他們的討論不僅僅是關於工具的迭代,更像是一場關於人類技能邊界的哲學思辨。當程式碼不再由人類一個個字元敲擊而出,我們究竟是在進化,還是在退化?這場對話揭示了一個殘酷而興奮的事實:我們正處於從「指令式程式設計」向「聲明式意圖」徹底轉型的奇點。「我兩個月沒手寫過一行程式碼了」 從輔助到接管震撼的開場白來自 Claude Code 的負責人 Boris Cherny。「兩天狂發 49 個 PR!」 這是 Boris 團隊目前的工作常態。他透露,Claude Code 團隊目前的開發工作幾乎100% 由 Claude Code 結合 Opus 4.5 完成。「對我個人而言,這種情況已經持續兩個多月了,我甚至不再手動進行任何小微信調。」 Boris 的話語中透著一種跨越時代的自信。無論是在 CLI 命令列,還是在 iOS 手機端,程式碼的生成、測試、提交,全流程由 AI 接管。這不僅僅是一個效率提升的故事,而是一個工作流重構的故事。Boris 分享了他極其硬核的「AI 原生」工作流:他通常會在終端同時運行 5 個 Claude 實例,甚至在 Web 端再開 5-10 個。他不再是那個逐行敲程式碼的工匠,而是一個指揮著一支 AI 軍團的指揮官。他使用「Plan Mode」(計畫模式)讓 AI 先思考策略,確立方案後再切換到執行模式。這種「平行化開發」的能力,讓一個人的產出足以匹敵一個傳統的小型開發團隊。而 Karpathy 的體驗也印證了這一點。他在長文中感嘆:「2025年11月,我還是80%手動+20% AI;到了12月,直接變成了80% AI + 20%手動。」「我在用英語程式設計。」Karpathy 略帶自嘲但也無比誠實地承認,「這有點傷自尊,告訴 AI 該寫什麼,就像在指揮一個實習生。但當你習慣了那種大規模駕馭軟體的『程式碼操作』能力後,你根本回不去了。」深度解析 從 Software 2.0 到 Agentic Coding要理解 Karpathy 的震撼,我們必須回溯他在 2017 年提出的 「Software 2.0」 概念。當時的 Software 2.0,是指用神經網路權重替代人工編寫的邏輯(Software 1.0)。程式設計師的角色從「編寫規則」變成了「整理資料」。而今天,我們正在邁入 Software 3.0 或者說是 Agentic Coding(代理編碼) 的時代。在這個階段,只有「意圖」(Intent)是人類提供的,而實現細節(Implementation)完全由 AI 掌控。Karpathy 敏銳地指出,這種轉變標誌著程式設計範式從「命令式」(Imperative)向「聲明式」(Declarative)的終極飛躍。過去:你需要告訴電腦「第一步做什麼,第二步做什麼,如果出錯怎麼辦」。現在:你只需要定義「成功標準是什麼」。正如 Boris 團隊所實踐的,利用 Claude Opus 4.5 強大的長程推理能力和 CLAUDE.md 這樣的記憶檔案,AI 能夠理解項目的整體架構上下文。Opus 4.5 在 CodeClash.ai 等基準測試中展現出的統治力,證明了它不僅僅是一個程式碼補全工具,而是一個具備邏輯推理、能夠自我修正的「工程師」。它不僅能寫程式碼,還能管理依賴、重構架構、甚至編寫測試用例來驗證自己的程式碼。這種「循環驗證」(Looping)能力是 Agentic Coding 的核心。AI 不再是寫完就忘,它會在一個封閉的循環中運行測試、讀取報錯、修改程式碼,直到通過測試為止。這正是 Karpathy 提到的「Feel the AGI」(感受通用人工智慧)的時刻——看著 AI 在30分鐘內不知疲倦地嘗試幾十種方案最終解決難題,人類感受到了前所未有的「槓桿效應」。10x 工程師的重新定義 通才的勝利隨著 AI 接管具體的編碼工作,「程式設計師」這個職業的定義正在被劇烈重寫。Boris 直言不諱:「我們現在傾向於招募『通才』(Generalists)。」在 LLM 能夠自動補全所有技術細節的時代,過去那些死記硬背的 API、特定語言的奇技淫巧,不再是護城河。你不需要記住 Python 的某個庫函數的具體參數,因為 AI 肯定記得比你清楚。真正的 「10x 工程師」 依然存在,但他們的能力模型發生了重組。未來的頂級工程師將是那些擁有宏觀視野的人——他們必須是能橫跨 產品與設計、業務甚至底層架構 的多面手。他們是產品經理:能清晰定義需求,識別偽需求。他們是架構師:能設計高可用的系統結構,指揮 AI 去填充模組。他們是測試官:能敏銳地發現 AI 邏輯中的漏洞,制定嚴格的驗收標準。Karpathy 也提出了深刻的疑問:「借助 LLM,通才是否會全面碾壓專才?」答案似乎是肯定的。AI 擅長填補微觀的細節(Fill in the blanks),而人類需要負責宏觀的戰略(Grand Strategy)。未來的程式設計,更像是玩《異星工廠》(Factorio)或者《星海爭霸》——你在指揮千軍萬馬,而不是親自去挖每一塊礦石。那些只專注於「把需求翻譯成程式碼」的初級程式設計師(Junior Devs),將面臨最嚴酷的生存危機。「廢用性萎縮」與 「Slopacolypse」繁榮背後的陰影然而,這場革命並非沒有陰影。Karpathy 最深刻的擔憂在於——「腦萎縮」(Atrophy)。「我已經注意到,我手動寫程式碼的能力正在緩慢退化。」Karpathy 描述這種感覺。在大腦的認知功能中,生成(Generation)和辨別(Discrimination)是兩種完全不同的能力。以前的程式設計師通過大量的「生成」訓練(寫程式碼)來強化邏輯;而現在,我們越來越依賴「辨別」能力(Review 程式碼)。這就像計算器的普及讓我們喪失了心算能力一樣。雖然我們還能讀懂程式碼(Review),但那種從零建構系統、對每一行程式碼都了然於胸的「肌肉記憶」正在消失。當你不再親自處理記憶體管理、不再親自偵錯並行死鎖,你對電腦系統的底層理解是否也會隨之膚淺化?更可怕的是 Karpathy 預測的 2026年 「Slopacolypse」(垃圾程式碼末日)。隨著 AI 生成內容的氾濫,網際網路和程式碼庫可能被大量低品質、看似正確實則充滿隱患的「垃圾」(Slop)填滿。GitHub 上可能充斥著由 AI 生成的、無人能維護的「屎山」。Karpathy 警告:目前的 AI 仍然會犯錯,不是簡單的語法錯誤,而是那種「粗心的初級程式設計師」才會犯的微妙概唸錯誤。它們會過度抽象,會堆砌死程式碼(Dead Code),會盲目順從你的錯誤假設。如果不加節制,軟體工程的熵將急劇增加。對此,Boris 則持一種「技術樂觀主義」態度。他認為「垃圾末日」不會到來,理由是——AI 審 AI。「我們在 Anthropic,每個 PR 都會開啟一個新的上下文窗口,讓 Claude 去 Review Claude 寫的程式碼。」這種「左腳踩右腳」的螺旋上升,被 Boris 視為解藥。隨著模型能力(特別是 Opus 4.5 及其後續版本)的提升,AI 清理垃圾程式碼、重構程式碼的能力將超過它製造垃圾的速度。未來的 IDE 可能不僅是程式碼編輯器,更是一個全自動的垃圾回收站,即時清洗著 AI 產生的冗餘。昇華:相位轉換的一年Karpathy 將 2026 年定義為 「行業代謝新能力、發生相位轉換(Phase Shift)的關鍵一年」。這不僅僅是效率的提升,而是物種的進化。我們正在經歷從「手工匠人」到「工業化生產」的劇變。在這個新時代,人類的角色從「建築工」變成了「建築師」。我們失去的是搬磚的手感,得到的是建造摩天大樓的視野。程式設計不再是關於「語法」和「演算法」的苦修,而是關於「想像力」和「邏輯」的釋放。但正如 Karpathy 所言,看著 AI 不知疲倦地在30分鐘內解決一個只有人類專家才能解決的難題,那種 「Feel the AGI」(感受通用人工智慧) 的時刻,既讓人興奮,也讓人感到一絲作為碳基生物的落寞。程式設計已死,程式設計萬歲。死的是作為「打字員」的程式設計師,活下來的是作為「創造者」的我們。當你不再需要為語法報錯而抓狂時,唯一限制你的,就只剩下你的想像力,和對世界本質的理解了。 (新智元)