“未來1至2年,誰能實現這個目標,誰將擁有全球最領先的具身智能AI模型。”11月5日,宇樹科技股份有限公司創始人、董事長王興興在第八屆虹橋國際經濟論壇“人形機器人創新發展合作”分論壇上對具身智能的“ChatGPT時刻”何時到來作出前瞻判斷。
在他看來,誰能在未來一兩年內實現“在80%的陌生場景中完成80%任務”的突破,誰就是全球最領先的具身智能。
“比如到明年這個時候,隨便一台人形機器人到會場,你跟它交代任務,比如說‘幫我拿一杯水’或者說給某位記者朋友拿一份東西過去,它可以直接過去把這個任務完成。這個場景完全沒有預訓練過,你給的東西它也沒有看到過。”王興興舉例說。
他認為,在完全陌生場景下,機器人能達到80%左右成功率,就已經掌握突破性技術了。
“目前人形機器人(包括具身智能)最關鍵的還是機器人大模型(具身智能模型)的進展速度,我覺得稍微有點慢了。”王興興表示,相對去年來說,今年深度強化學習的全身運控的進步非常明顯,但在具身大模型,“端到端能幹活“的技術進步稍微慢了一點,但總體而言其對人形機器人的前景較樂觀。
王興興稱,“具身機器人目前的發展階段類似於ChatGPT發佈前的1-3年左右,大家已經發現了方向,但還沒有做成可以突破臨界點的事情。
為了早日實現“ChatGPT時刻”,更應該研究模型,還是收集更多的資料?王興興表示,目前在模型結構上大家做了很多嘗試,但泛化能力不夠,還需要創新。大家也需要收集更大規模的資料、質量更好的資料。但目前,對資料的採集、對資料質量的評判還非常困難。
另外,他提出,模型和資料需要相輔相成,而不是一股腦採集大量資料,或者一股腦把模型做大。
目前,具身智能主流模型有VLA(視訊語言動作)+RL(強化學習)模型和基於視訊生成的世界模型。王興興表示,前者可以用模擬環境做訓練,或者用真實場景做訓練,但泛化能力相對來說不是特別夠。因此,他更喜歡基於視訊生成的世界模型。
然而,王興興也認為,該模型面臨比較大的挑戰。因為基於視訊生成的世界模型對算力的需求非常大,需要的算力卡比較多,所以中小型人形機器人公司往往“跑不動”,反而是一些大型AI公司、網際網路公司視訊模型的資源更加豐富,做出該模型的機率更大。 (金融時報)