梁文鋒署名!DeepSeek再發炸裂論文:提出“條件記憶”新範式,徹底打破GPU推理視訊記憶體牆

當業界紛紛湧入MoE(Mixture-of-Experts)架構以實現高效擴容時,一個根本性的低效問題卻始終存在:

強大的Transformer模型,本質上缺乏一種原生的“知識尋找”機制。它們被迫通過複雜的“動態計算”來模擬簡單的“靜態檢索”過程。例如,為了識別“戴安娜王妃”這樣的實體,模型需要消耗多層注意力與前饋網路資源,逐步建構其內部表徵。這無異於用高射炮打蚊子,浪費了寶貴的計算深度

來自DeepSeek 的最新論文,為解決這一難題提出了一個全新的稀疏性維度:條件記憶(Conditional Memory)

他們推出名為Engram的新模組,它以O(1)的恆定時間複雜度實現了可擴展的知識尋找,作為對MoE“條件計算”的有力補充。

通過系統性研究,團隊揭示了一條指導兩種稀疏性權衡的U形縮放定律。依據該定律,他們建構了一個270億參數的Engram模型,在總參數量與計算量(FLOPs)完全相同的情況下,其性能全面超越了純MoE基線。

令人矚目的是,這種提升不僅體現在知識密集型任務上(MMLU +3.4),更在通用推理(BBH +5.0)、程式碼(HumanEval +3.0)和數學(MATH +2.4)等領域取得了更大的收益。

機理分析表明,Engram通過接管早期層的靜態模式重構任務,有效“加深”了網路,為複雜推理釋放了更多計算資源。同時,它將局部依賴關係的處理委託給尋找操作,從而解放了注意力機制,使其能更專注於全域上下文,極大地提升了模型的長文字處理能力(如Multi-Query NIAH任務得分從84.2提升至97.0)。

更重要的是,Engram的設計充分考慮了系統效率。其確定性的尋找機制支援在執行階段從低速的主機記憶體預取資料,幾乎不產生額外開銷,從而打破了GPU視訊記憶體的瓶頸。

論文地址:https://github.com/deepseek-ai/Engram

語言模型的雙重任務:計算與檢索

語言建模包含兩種性質截然不同的子任務:一是需要深度動態計算的組合推理,二是對本地、靜態、高度模式化的文字片段(如命名實體、慣用語)的知識檢索

經典的N-gram模型證明了,後一種任務通過廉價的尋找操作就能高效完成。然而,當前的LLM架構缺少這種原生尋找功能,導致它們必須通過計算來模擬檢索,造成了資源浪費。

為了讓模型架構與語言訊號的這種二元性對齊,DeepSeek提出了“條件記憶”這一新的稀疏軸,與MoE的“條件計算”形成互補。

• 條件計算 (MoE):稀疏啟動參數,處理動態邏輯。

• 條件記憶 (Engram):稀疏尋找操作,檢索靜態知識。

研究團隊提出的Engram模組,正是這一理念的具體實現。它以經典的N-gram結構為基礎,並融入了分詞器壓縮、多頭雜湊、上下文門控和多分支整合等現代化改造。

Engram架構:兩階段實現高效尋找與融合

Engram作為一個條件記憶模組,旨在將靜態模式儲存與動態計算在結構上分離。其工作流程分為兩個核心階段:檢索融合

1. 稀疏檢索:通過雜湊N-grams定位記憶

首先,模組需要將局部上下文對應到靜態記憶條目。這包括兩個步驟:

分詞器壓縮 (Tokenizer Compression):標準的分詞器常為語義等價的詞分配不同ID(如Apple vs. apple)。為提升語義密度,Engram首先通過一個預計算的對應函數,將原始Token ID壓縮為規範化的ID。

多頭雜湊 (Multi-Head Hashing):直接參數化所有N-gram組合是不現實的。Engram採用基於雜湊的方法,為每個N-gram階數(如2-gram, 3-gram)配備K個獨立的雜湊頭,將上下文雜湊到不同嵌入表中的索引,以降低衝突。最終,所有檢索到的嵌入向量被拼接成一個記憶向量et

2. 上下文感知門控與融合

檢索到的記憶向量et是靜態的、上下文無關的先驗知識,可能存在雜湊衝突或歧義。為瞭解決這個問題,Engram引入了受注意力機制啟發的上下文感知門控

它將當前層的隱藏狀態ht(已聚合了全域資訊)作為Query,將記憶向量et投影為Key和Value。通過計算Query與Key的相似度,生成一個門控標量αt。這個標量決定了檢索到的資訊與當前上下文的匹配程度:如果匹配度低,門控值趨近於0,有效抑制噪聲。

最後,通過門控的Value向量會經過一個輕量級的深度因果摺積,以擴大感受野並增強非線性。最終的輸出通過殘差連接融入到Transformer主幹網路中

核心發現:稀疏性分配的U形定律

為了量化MoE(計算)與Engram(記憶)之間的協同作用,研究人員提出了稀疏性分配問題:在固定的總參數和計算預算下,應如何在這兩者之間分配“稀疏容量”?

他們定義了一個分配比例ρ,其中ρ=1代表純MoE模型,ρ<1則代表將一部分原用於MoE專家的參數轉而分配給Engram的嵌入表。

實驗在兩個不同的計算規模(2e20和6e20 FLOPs)下進行,結果揭示了一條清晰的U形縮放定律

MoE主導 (ρ → 100%):模型缺乏專門的記憶模組,被迫低效地通過計算重構靜態模式

Engram主導 (ρ → 0%):模型喪失了條件計算能力,無法處理需要動態、上下文相關推理的任務

最佳平衡點:將大約20%-25%的稀疏參數預算分配給Engram時,模型性能達到最優。

這一穩定的U形關係證明了條件計算和條件記憶在結構上的互補性。此外,在“無限記憶體”設定下,單獨增加Engram的記憶槽數量,模型性能也呈現出可預測的對數線性提升,證明了Engram是一個有效的、可獨立擴展的性能提升手段。

大規模預訓練:性能全面超越,推理提升更顯著

基於上述定律,研究團隊訓練了一系列模型,並與嚴格對等的基線進行比較。所有模型均在262B Tokens上訓練,並保持啟動參數量(3.8B)一致。

Engram-27B:總參數26.7B,與MoE-27B基線相同。它將MoE專家的數量從72個減少到55個,並將節約的參數(5.7B)用於建構Engram記憶模組。

Engram-40B:在Engram-27B基礎上,進一步將Engram記憶擴展至18.5B參數,總參數達到39.5B。

實驗結果(Table 1)表明:

1.稀疏模型優於密集模型:所有稀疏變體(MoE與Engram)均顯著優於同等計算量的Dense-4B模型

2.Engram全面超越MoE:在參數和計算量完全匹配的情況下,Engram-27B在所有評估維度上都優於MoE-27B

3.推理與程式碼數學領域增益尤為突出:雖然Engram在知識任務(如MMLU +3.4, CMMLU +4.0)上表現出色,但其在通用推理(BBH +5.0, ARC-Challenge +3.7)和程式碼數學(HumanEval +3.0, MATH +2.4)上的優勢更為顯著

這證明了引入專用的知識尋找原語,能夠極大地提升模型的表徵效率,其益處遠不止於知識檢索本身。

Engram如何工作?機理分析揭示“有效深度”增加

為了探究Engram的內部工作機制,研究團隊使用了LogitLens和CKA(中心核對齊)兩種可解釋性工具。

加速預測收斂:LogitLens分析顯示,與MoE基線相比,Engram模型的淺層網路就能生成更接近最終預測結果的表徵(KL散度更低)。這表明,通過直接尋找知識,Engram減少了模型逐步建構特徵所需的計算步驟

提升有效深度:CKA分析則揭示了Engram模型與MoE模型之間的層間表徵相似性。結果顯示,Engram模型的淺層(如第5層)在功能上等價於MoE模型的深層(如第12層)

結論很明確:Engram通過顯式尋找繞過了早期的特徵組合階段,在功能上等價於增加了模型的有效深度

系統效率:解耦計算與儲存,打破GPU視訊記憶體牆

Engram的一個關鍵優勢在於其系統設計。與依賴執行階段隱藏狀態進行動態路由的MoE不同,Engram的尋找索引完全由輸入Token序列決定,具有嚴格的確定性

這一特性使得在推理時可以實現高效的 預取-重疊(prefetch-and-overlap) 策略:

系統可以在GPU計算前序Transformer塊的同時,非同步地從大容量、低成本的主機記憶體(DRAM)甚至NVMe SSD中預取後續Engram層所需的嵌入。

實驗在一個1000億參數的Engram層上進行了驗證。結果顯示,將整個嵌入表解除安裝到主機記憶體,所帶來的吞吐量懲罰峰值僅為2.8%,幾乎可以忽略不計。這證明了Engram能夠有效繞過GPU視訊記憶體限制,以極小的開銷實現參數規模的激進擴展。

這意味著可以用較少/較低配的GPU(視訊記憶體有限)來運行一個總參數量極大的模型。這大大降低了模型的部署和使用成本

寫在最後

DeepSeek AI的Engram工作,為大模型稀疏化設計開闢了一個全新的、與MoE互補的軸線——條件記憶。通過將靜態知識檢索從動態計算中剝離,Engram不僅在知識任務上取得優勢,更在推理、程式碼、數學等複雜任務上實現了超預期的性能提升。

這項研究的核心貢獻包括:

1. 提出Engram模組:一個可擴展、系統高效的條件記憶實現。

2. 發現稀疏分配的U形定律:為平衡計算與記憶提供了理論指導。

3. 驗證了架構優勢:在同等參數和計算成本下,混合模型全面超越純MoE模型。

4. 揭示了工作機理:Engram通過提升模型的“有效深度”來最佳化表徵效率。

研究人員認為,條件記憶應成為下一代稀疏大模型不可或缺的建模原語,為建構更強大、更高效的智能系統鋪平了道路。

我彷彿已經看到了v4的影子 (AI寒武紀)