太平洋時間2026年1月5日,拉斯維加斯國際消費電子展(CES)現場,NVIDIA創始人兼首席執行長黃仁勳的一句“機器人開發的ChatGPT時刻已然到來”,為全球機器人產業定下了新的發展基調。
當天,NVIDIA正式宣佈推出用於物理AI的全新開放模型、框架和AI基礎設施,同時展示了Boston Dynamics、Caterpillar、Franka Robotics等全球領先企業基於其技術打造的多款新型機器人與自主機器,涵蓋移動機械臂、人形機器人、工業作業裝置等多個品類。
這一系列發佈並非孤立的技術更新,而是NVIDIA對機器人產業發展瓶頸的精準突破,更是對未來“專家級通用”機器人開發範式的全面重構。
長期以來,機器人產業始終面臨三大核心痛點:
一是缺乏理解物理世界的通用智能,傳統機器人依賴預設程序,難以應對動態環境變化;
二是開發流程分散複雜,模擬與現實存在巨大鴻溝,技術迭代效率低下;
三是軟硬體協同不足,AI算力與能效難以匹配機器人輕量化、高即時性的應用需求。
NVIDIA此次推出的全端技術體系——從Cosmos與GR00T開放模型,到Isaac Lab-Arena模擬框架與OSMO計算框架,再到Blackwell架構驅動的Jetson T4000硬體模組,形成了覆蓋“模型-框架-硬體-生態”的完整解決方案,旨在打通機器人開發的全生命周期,加速新一代AI驅動機器人的規模化落地。
本文將從技術核心解析、產業鏈重構影響、應用場景突破、產業趨勢展望四大維度,深度拆解NVIDIA物理AI技術體系的核心價值與行業變革意義。
黃仁勳所言的“機器人開發的ChatGPT時刻”,核心在於物理AI技術的突破性進展。
不同於傳統AI聚焦數字世界的資訊處理,物理AI的核心目標是讓機器理解物理世界的運行規律,具備感知、推理、規劃與行動的閉環能力,實現從“執行指令”到“理解並決策”的跨越。
NVIDIA此次發佈的技術體系,正是圍繞這一核心目標建構的全端解決方案,其技術核心可拆解為“感知-推理-行動-訓練”四大核心模組。
1.1 核心模型 Cosmos與GR00T建構物理AI的“認知大腦”
要實現機器人對物理世界的理解,首先需要建構能夠建模物理規律、融合多模態資訊的基礎模型。NVIDIA此次推出的Cosmos系列與GR00T N1.6模型,分別解決了“物理世界認知”與“人形機器人全身控制”兩大核心問題,共同構成了物理AI的“認知大腦”。
1.1.1 Cosmos系列模型:賦予機器人“物理直覺”
傳統機器人的最大短板在於缺乏“物理直覺”——無法預判環境變化對自身動作的影響,也難以理解物體的物理屬性(如重力、摩擦力、材質特性等)。這導致機器人在執行簡單任務時,一旦遇到未預設的場景(如地面油污、物體重量變化),就容易出現失穩或任務失敗的情況。Cosmos系列模型的核心價值,正是通過生成式AI技術,讓機器人內化物理世界的基本規律,具備即時預測、跨場景遷移與多步推理的能力。
Cosmos系列包含三大核心模型,形成了“感知-預測-推理”的認知閉環:
這種將感知、推理與決策緊密耦合的能力,有效解決了傳統模組化架構中資訊層層傳遞的損耗問題。
三者的協同邏輯清晰:
1.1.2 GR00T N1.6:解鎖人形機器人的“全身控制”能力
如果說Cosmos系列模型解決了機器人“認知世界”的問題,那麼Isaac GR00T N1.6則聚焦於“如何行動”,特別是為人形機器人提供開放式的推理視覺語言行動(VLA)模型,實現全身動作的精準控制與上下文理解。
人形機器人的控制難度遠超傳統機械臂,其擁有數十個自由度,需要兼顧平衡、協調、精準操作等多重目標,傳統控制方法難以實現複雜動作的靈活適配。
GROOT N1.6的核心突破在於兩大技術創新:
一是採用MoE(混合專家)架構,實現“通專融合”的控制能力。該架構包含多個獨立的“專家”子網路,在處理不同任務時啟動對應的專家模組——例如理解自然語言指令時啟動“通用語言專家”,執行精密銲接時啟動“運動控制專家”,既保證了通用任務的適應性,又提升了專項任務的精準度。
二是深度整合Cosmos Reason 2模型,強化上下文理解與推理能力。
通過融合視覺語言推理與動作控制,GR00T N1.6可直接將人類自然語言指令轉換為全身協調的動作序列,例如將“把桌子上的檔案遞給我”拆解為“移動至桌前→識別檔案位置→調整姿態→抓取檔案→精準遞出”的連貫動作,無需人工編寫複雜的運動控製程序。
目前,Franka Robotics、NEURA Robotics、Humanoid等企業已開始利用GR00T賦能的工作流,進行機器人新行為的模擬、訓練與驗證。
Salesforce則通過整合Agentforce、Cosmos Reason與NVIDIA Blueprint,對機器人採集的視訊片段進行分析,將事件解決時間縮短了50%,充分驗證了該模型在提升任務效率方面的核心價值。
1.2 支撐框架 Isaac Lab-Arena與OSMO打通開發全流程
物理AI模型的落地,離不開高效的開發與訓練框架支撐。
長期以來,機器人開發麵臨兩大流程痛點:
一是模擬評估體系分散,基準測試依賴人工操作,難以實現規模化驗證;
二是端到端工作流複雜,需要跨工作站、雲端等異構計算資源,協同難度大,開發周期漫長。
NVIDIA此次發佈的Isaac Lab-Arena開源模擬框架與OSMO雲原生計算框架,正是針對這兩大痛點的精準解決方案,旨在實現“模擬-訓練-評估-部署”的全流程閉環。
1.2.1 Isaac Lab-Arena:標準化模擬評估的“協作平台”
模擬訓練是機器人開發的核心環節,其質量直接決定了機器人在真實環境中的性能。
但當前行業缺乏統一的模擬評估標準,不同開發者採用不同的測試體系,導致技術成果難以對比,且模擬場景與真實環境的差異過大,大幅降低了訓練效率。Isaac Lab-Arena的核心目標是建構一個開放原始碼的協作系統,實現大規模機器人策略評估與基準測試的標準化。
該框架的核心優勢體現在三個方面:
一是模組化設計,其評估層與任務層通過與光輪智能的深度合作完成建構,支援靈活配置不同任務場景與評估指標;
二是多基準相容,可直接對接Libero、Robocasa等業界領先的基準測試體系,實現測試流程的標準化,確保機器人技能在部署至物理硬體前具備穩健性與可靠性;
三是開源協作,現已在GitHub上公開發佈,開發者可基於該框架共享測試場景、驗證演算法效果,加速技術迭代。
1.2.2 OSMO:跨環境協同的“開髮指揮中心”
機器人開發涉及合成資料生成、模型訓練、軟體在環測試等多個環節,需要跨越工作站、邊緣裝置、混合雲等多種計算環境,傳統開發模式下,各環節相互獨立,資源調度複雜,嚴重影響開發效率。
OSMO作為雲原生編排框架,將機器人開發整合至單一易用的命令中心,實現了全流程的高效協同。
OSMO的核心功能包括:
一是跨環境工作流定義,開發者可通過統一介面,定義覆蓋多計算環境的工作流,實現合成資料生成、模型訓練、測試驗證的自動化執行;
二是資源智能調度,根據不同環節的算力需求,自動分配工作站、雲端等資源,提升資源利用率;
三是快速整合適配,現已開放使用,並被Hexagon Robotics等企業採用,同時整合至Microsoft Azure Robotics Accelerator工具鏈中,大幅降低了開發者的接入門檻。
1.3 硬體基石 Blackwell架構驅動的邊緣AI算力革命
物理AI模型的即時運行,需要強大的邊緣AI算力支撐。機器人尤其是人形機器人、移動作業裝置等,對硬體的輕量化、低功耗、高即時性提出了嚴苛要求。
傳統邊緣計算模組難以平衡算力與能效,無法滿足複雜物理AI模型的運行需求。
NVIDIA此次發佈的Jetson T4000模組與IGX Thor工業邊緣平台,基於Blackwell架構打造,實現了算力與能效的跨越式提升,為物理AI的邊緣落地提供了核心硬體支撐。
1.3.1 Jetson T4000:機器人的“高效小腦”
Jetson T4000是Blackwell架構下放至邊緣端的首款機器人專用計算模組,現已正式發售,千片起訂量下單價為1999美元,為Jetson Orin客戶提供了高性價比的升級路徑。
相較於上一代Jetson AGX Orin,該模組在核心性能上實現了全方位突破:
Jetson T4000的核心突破在於NVFP4 4位浮點精度推理技術。對於物理AI應用而言,感知環節的精度可適當降低,但決策與控制的即時性至關重要。
該技術允許機器人在邊緣端直接運行複雜的VLA模型,無需依賴不穩定的雲端網路,既保證了即時響應,又提升了運行安全性。
在70瓦的可配置功率範圍內,其可提供1200 FP4 TFLOPS的算力,足以支撐Cosmos與GR00T模型的即時運行,是能耗受限型自主系統的理想選擇。
1.3.2 IGX Thor:工業邊緣的“安全算力核心”
除了面向通用機器人的Jetson T4000,NVIDIA還宣佈IGX Thor將於2026年1月晚些時候上市,聚焦工業邊緣場景,提供高性能AI計算與功能安全保障。
該平台將機器人技術擴展到工業生產、建築採礦等複雜邊緣環境,具備企業級軟體支援能力,可滿足工業級應用對穩定性、安全性的嚴苛要求。
目前,AAEON、Advantech、ADLINK等眾多合作夥伴已推出搭載Thor的系統,覆蓋邊緣AI、機器人和嵌入式應用等多個領域。
1.4 生態協同 NVIDIA與Hugging Face打通開源開發鏈路
技術的規模化落地離不開生態的支撐。當前,機器人已成為Hugging Face平台上增長最快的領域,而NVIDIA的開放模型與資料集在該平台的下載量持續領先。
為進一步加速開源物理AI的開發,NVIDIA與Hugging Face達成深度合作,將開放原始碼的Isaac與GR00T技術整合到領先的LeRobot開源機器人框架中,建構了“軟硬體一體化”的開源開發生態。
此次合作的核心價值在於打通了兩大開發者社區:
這種開源生態的協同,大幅降低了機器人開發的門檻,讓中小企業與個人開發者能夠快速接入頂尖的物理AI技術,加速了創新應用的孵化。
正如Hugging Face首席技術官所言:“與NVIDIA的合作將徹底改變開源機器人開發的格局,讓更多開發者能夠聚焦應用創新,而非基礎技術建構。”
機器人產業鏈傳統上呈現“上游高壁壘、中游低利潤、下游分散化”的碎片化格局。
2.1 上游核心零部件 AI驅動的技術升級與國產化機遇
上游核心零部件是機器人產業的“卡脖子”環節,也是利潤最集中的領域。
NVIDIA的物理AI技術體系,將對上游零部件產業產生兩大關鍵影響:一是推動零部件的“智能化升級”,二是為國產零部件企業提供彎道超車的機遇。
在智能化升級方面,傳統零部件以“高精度執行”為核心目標,而物理AI時代的零部件需要具備“感知-反饋-協同”的智能能力。
例如,伺服電機需要即時採集運動資料,並與AI模型協同調整參數,以適應動態環境下的動作需求;減速器則需要具備更高的動態響應速度,配合機器人的即時微調動作。
NVIDIA的GR00T模型與Jetson硬體平台,為零部件的智能化升級提供了標準介面與算力支撐,推動上游零部件從“被動執行”向“主動協同”轉變。
在國產化機遇方面,長期以來,國內零部件企業受制於核心技術不足,難以與海外巨頭競爭。
而NVIDIA的開放模型與框架,降低了零部件企業的智能化研發門檻。
例如,國內控製器企業可基於NVIDIA的CUDA架構與GR00T模型,快速開發具備物理AI能力的智能控製器,無需從零建構演算法體系。
伺服系統企業可借助Jetson平台的算力,實現運動資料的即時分析與參數最佳化。
同時,隨著國內機器人產業政策的支援(如廣西出台的機器人產業發展政策,對核心零部件企業給予最高300萬元的年度獎勵),國產零部件企業將在技術升級與市場拓展中獲得更多助力。
此外,NVIDIA Jetson T4000的量產與普及,將帶動上游晶片供應鏈的發展。
該模組採用的Blackwell架構晶片,其國產化替代(如封裝測試、配套元器件)將為國內半導體企業提供新的市場機遇,進一步完善機器人產業鏈的國產化生態。
2.2 中游整機製造 從“組裝整合”到“應用創新”的價值躍升
中游整機製造是傳統機器人產業鏈的“薄弱環節”,長期依賴上游零部件進口,以組裝整合為主,缺乏核心技術,毛利率普遍低於20%。NVIDIA的全端技術體系,將徹底改變中游整機企業的發展模式,推動其從“組裝商”向“應用解決方案提供商”轉型。
首先,降低研發成本與周期。傳統整機企業需要投入巨額資金建構AI演算法、模擬平台與硬體適配體系,研發周期長達1-2年。
而基於NVIDIA的Cosmos模型、Isaac Lab-Arena模擬框架與Jetson硬體,整機企業可直接復用成熟的技術模組,聚焦行業應用場景的定製化開發,研發周期可縮短至3-6個月,研發成本降低50%以上。
例如,智元機器人基於NVIDIA技術推出的面向工業和消費行業的人形機器人,以及配套的Genie Sim 3.0模擬平台,正是借助NVIDIA的技術賦能,快速實現了產品落地與迭代。
其次,提升產品競爭力。借助NVIDIA的物理AI技術,中游整機企業的產品將具備“通用智能”能力,能夠適配更多場景,擺脫同質化競爭。
例如,NEURA Robotics推出的第3代人形機器人(由保時捷設計),基於GR00T模型與Jetson Thor平台,具備精細化控制能力,可同時適配工業裝配、服務接待等多個場景;Richtech Robotics的移動人形機器人Dex,借助NVIDIA的導航與操作技術,能夠在複雜工業環境中實現精細操作與自主導航,大幅提升了產品的市場競爭力。
最後,推動商業模式創新。隨著產品競爭力的提升,中游整機企業將從“賣裝置”向“提供服務”轉型,例如通過機器人租賃、按效果收費等模式,提升客戶粘性與長期盈利能力。
例如,智元機器人推出的國內首個機器人租賃平台“擎天租”,正是基於其技術領先的機器人產品,開啟了新的商業模式探索。
2.3 下游應用場景 從“單一化”到“規模化”的全面滲透
下游應用場景的分散化是制約機器人產業規模化發展的關鍵因素。傳統機器人主要應用於汽車製造、電子加工等少數標準化場景,而醫療、建築、消費等領域的應用相對有限。
NVIDIA的物理AI技術體系,通過提升機器人的環境適應性與任務通用性,將推動下游應用場景從“單一化”向“規模化”全面滲透,尤其是在工業、醫療、建築採礦、消費四大領域實現突破性進展。
在工業領域,機器人將從“固定工位操作”向“全流程協同作業”升級。例如,富臨精工工廠引入的近百台遠征A2-W機器人(基於NVIDIA技術),已實現與AMR的協同作業,自主完成周轉箱的搬運、轉移與精準放置,覆蓋三條不同裝配線,涉及20余種物料,承載重量提升至14千克,且未發生一起物料傾倒事故。
隨著NVIDIA技術的普及,更多製造企業將實現“機器人+智能製造”的升級,推動工業機器人的規模化應用。
在醫療領域,物理AI技術將推動手術機器人與輔助診療裝置的精準化升級。
在建築採礦領域,Caterpillar與NVIDIA的深化合作將推動自主作業裝置的規模化落地。
建築與採礦行業屬於典型的“危險、骯髒、枯燥”場景,對機器人的需求迫切,但環境複雜,傳統裝置難以適配。
Caterpillar將借助NVIDIA的物理AI技術,開發具備自主導航、精準作業能力的重型裝置,提升作業效率與安全性。
在2026年1月7日的CES主題演講中,Caterpillar CEO Joe Creed與NVIDIA高管將披露更多合作細節,預計將推出多款基於Blackwell架構的自主作業裝置。
在消費領域,人形機器人將從“高端玩具”向“家庭助手”轉型。
2.4 價值分配重構 生態主導者引領的利潤再平衡
隨著NVIDIA全端技術體系的普及,機器人產業鏈的價值分配將發生重大變化:從“上游零部件企業主導”向“生態主導者+應用創新者”共同主導的格局轉變。
這種價值分配的重構,將推動產業鏈從“零和博弈”向“共贏發展”轉變。
據行業預測,隨著這種生態化格局的形成,2027年將成為中國機器人產業的“大規模商業化元年”,整個產業鏈的規模將突破兆級。
技術的價值最終需要通過應用場景來驗證。NVIDIA此次發佈的物理AI技術體系,已在工業、醫療、消費、建築採礦等多個領域實現落地,通過一系列標竿案例,充分驗證了其在提升效率、降低成本、保障安全等方面的核心價值。
本節將重點解析四個典型應用場景的落地案例,深入探討物理AI技術的實際應用效果。
3.1 工業製造 富臨精工的“人形機器人+智能製造”升級
富臨精工是國內領先的汽車零部件製造商,其生產車間涵蓋多條裝配線,物料搬運、上料等環節傳統上依賴人工操作,存在效率低、誤差率高、勞動強度大等問題。
為實現智能製造升級,富臨精工與智元機器人達成合作,引入近百台基於NVIDIA Jetson Thor與GR00T模型的遠征A2-W人形機器人,建構了“智能中樞平台+人形機器人+AMR”的協同作業體系。
該體系的核心優勢在於三個方面:
一是全流程自動化,智能中樞平台即時監控線邊物料剩餘量,當觸及預設水位線時,自動觸發配送任務,人形機器人與AMR協同作業,自主完成周轉箱的搬運、轉移與精準放置,無需人工干預;
二是動態適應性強,借助NVIDIA Cosmos Reason 2模型的推理能力,人形機器人能夠應對車間內的動態環境變化,如躲避移動的工人與裝置、調整物料放置角度等;
三是規模化擴展能力,從最初的1個搬運工位擴展至4個,覆蓋三條不同裝配線,涉及物料種類從4種增至20余種,承載重量從5-6千克提升至14千克,且線邊上料場景至今未發生一起物料傾倒事故。
據富臨精工相關負責人介紹,引入該體系後,物料搬運效率提升了60%,人工成本降低了40%,同時物料配送的誤差率降至0.1%以下。
這一案例充分驗證了NVIDIA物理AI技術在工業製造場景的規模化應用價值,為其他製造企業的智能化升級提供了可複製的方案。
3.2 醫療健康 LEM Surgical的精準手術機器人訓練體系
手術機器人是醫療領域的高端裝備,其訓練需要大量的臨床資料與模擬場景,但傳統訓練方式存在資料稀缺、風險高、周期長等問題。
其訓練體系的核心的是Cosmos Transfer 2.5模型的域遷移能力:
借助這一體系,LEM Surgical的研發團隊能夠快速驗證手術機器人的操作策略,最佳化運動控制參數,大幅縮短了研發周期。
此外,XRLabs利用NVIDIA Jetson Thor與Isaac for Healthcare,開發了智能手術內窺鏡系統。該系統通過外接手術內鏡採集即時圖像,借助Cosmos Predict 2.5模型的即時預測能力,分析手術部位的解剖結構與操作風險,為外科醫生提供即時引導,降低了手術難度與併發症風險。目前,該系統已在多家醫院開展試點應用,手術精準度提升了30%,手術時間縮短了20%。
3.3 消費服務 LG Electronics的家用智慧型手機器人
家用機器人是消費領域的重要增長點,但傳統家用機器人功能單一,難以應對複雜的家庭環境。
LG Electronics在CES 2026上發佈的全新家用機器人,基於NVIDIA的Cosmos系列模型與Jetson T4000模組,具備全方位的家務處理能力與動態環境適應能力。
該機器人的核心優勢在於其強大的物理AI能力:
此外,該機器人還具備自主充電、故障自診斷等智能功能,能夠適應不同戶型的家庭環境。
LG Electronics相關負責人表示,這款家用機器人的目標是成為“家庭助手”,而非簡單的“家務工具”,其定價將控制在萬元以內,以實現規模化普及。該產品的推出,標誌著消費級家用機器人正式進入“通用智能”時代。
3.4 建築採礦 Caterpillar的自主作業裝置升級
建築與採礦行業是典型的高危、高勞動強度行業,對自主作業裝置的需求迫切。Caterpillar作為全球領先的工程機械製造商,正在擴大與NVIDIA的合作,將先進的AI和自主系統引入建築和採礦領域的裝置及作業現場。
基於NVIDIA的Blackwell架構與物理AI模型,Caterpillar正在開發多款自主作業裝置,包括自主挖掘機、自主礦用卡車等。
這些裝置具備三大核心能力:
一是自主導航,借助Cosmos模型的環境感知與推理能力,能夠在複雜的施工現場與礦區環境中精準定位,躲避障礙物;
二是精準作業,通過GR00T模型的動作控制能力,實現挖掘、裝載、運輸等作業的精準執行,提升作業效率;
三是協同作業,多台裝置可通過OSMO框架實現資料共享與協同調度,形成自主作業車隊。
據Caterpillar透露,其自主礦用卡車已在澳大利亞某金礦開展試點應用,借助NVIDIA的技術,作業效率提升了25%,事故率降低了80%,同時減少了人工成本。
在2026年1月7日的CES主題演講中,Caterpillar CEO Joe Creed將與NVIDIA高管共同披露更多合作細節,預計將推出面向建築行業的首款自主挖掘機,計畫2027年實現規模化量產。
NVIDIA此次發佈的物理AI技術體系,不僅解決了當前機器人產業的核心痛點,更勾勒出未來機器人產業的發展圖景。
結合行業發展規律與技術迭代趨勢,未來3-5年,機器人產業將呈現“通用化、輕量化、開源化、規模化”四大核心趨勢,而NVIDIA將在這一處理程序中扮演關鍵的引領角色。
4.1 趨勢一 從“專用機器人”到“專家級通用機器人”的跨越
傳統機器人多為“專用裝置”,針對特定場景開發,功能單一,難以跨場景應用。而物理AI技術的發展,將推動機器人從“專用”向“通用”跨越,最終實現“專家級通用”的目標——即能夠快速學習多種任務,適配不同行業場景的需求。
NVIDIA的Cosmos與GR00T模型,正是這一趨勢的核心驅動力。
通過內化物理世界的通用規律,機器人能夠快速適應新場景、學習新任務,無需針對每個場景進行重新程式設計。一款基於GR00T模型的人形機器人,既可以在工廠完成精密裝配,也可以在醫院協助護理,還可以在家庭處理家務,只需通過少量場景資料微調即可實現功能適配。
據行業預測,到2028年,專家級通用機器人的市場佔比將超過30%,成為機器人產業的主流產品形態。
4.2 趨勢二 硬體輕量化與能效比的持續提升
機器人尤其是人形機器人、移動服務機器人,對硬體的輕量化、小型化、低功耗提出了嚴苛要求。
隨著Blackwell架構的普及與技術迭代,邊緣AI算力模組將實現“更高算力、更低功耗”的持續突破,推動機器人硬體的輕量化發展。
NVIDIA的Jetson系列模組已展現出這一趨勢:
這將推動機器人的小型化發展,如宇樹科技的小型人形機器人、松延動力的Bumi小布米等輕量化產品將成為消費市場的主流,進一步擴大機器人的應用範圍。
4.3 趨勢三 開源生態成為創新核心驅動力
機器人產業的創新需要大量的技術積累與資源投入,單一企業難以完成全鏈條的創新。
開源生態將成為未來機器人產業創新的核心驅動力,吸引全球開發者共同參與技術突破與應用創新。
NVIDIA與Hugging Face的合作,正是開源生態發展的重要里程碑。隨著LeRobot框架的普及,越來越多的開發者將接入NVIDIA的物理AI技術體系,孵化出更多創新應用。
同時,開源生態的發展將推動技術標準的統一,降低行業的協作成本,加速創新成果的轉化。預計到2027年,全球將有超過50%的機器人創新應用基於開源框架開發,開源生態將成為機器人產業競爭的核心戰場。
4.4 趨勢四 規模化落地與成本快速下降
隨著技術的成熟與生態的完善,機器人的規模化落地將推動成本快速下降,形成“規模效應-成本下降-需求擴大”的良性循環。
據資料顯示,2025年國內人形機器人出貨量預計達1.8萬台,2026年有望攀升至6.25萬台;多位行業專家預測,2026年國內人形機器人產量將突破10萬台,2028年有望達到百萬台級。
成本下降的主要驅動力包括三個方面:
一是核心零部件的國產化替代,如國內企業已實現減速器、伺服系統的批次供貨,成本較海外產品降低30%以上;
二是規模化生產帶來的製造費用降低,隨著產量的提升,整機製造的單位成本將大幅下降;
三是開源技術的應用,降低了研發成本。預計到2030年,人形機器人的售價將降至5萬元以下,消費級市場將全面爆發。
4.5 挑戰與應對 技術、倫理與政策的協同推進
儘管機器人產業前景廣闊,但仍面臨技術、倫理與政策三大挑戰。
應對這些挑戰,需要政府、企業與科研機構的協同推進:
一是加強核心技術研發,聚焦泛化能力、安全性等關鍵痛點,推動技術標準的統一;
二是建立健全倫理規範與法律法規,平衡技術創新與社會影響;
三是出台針對性的政策支援,如職業培訓、資料安全保障等,確保機器人產業的健康發展。
NVIDIA作為行業引領者,已通過開放模型與框架,推動技術標準的統一;同時,其與全球企業的合作,也在積極探索機器人應用的倫理邊界。
CES 2026上NVIDIA的系列發佈,標誌著機器人產業正式進入物理AI驅動的新時代。
黃仁勳所言的“機器人開發的ChatGPT時刻”,不僅是技術的突破,更是產業範式的變革。
未來十年,隨著物理AI技術的持續迭代、開源生態的不斷完善、成本的快速下降,機器人將從“工業裝備”全面走向“生活助手”,深度融入製造業、醫療健康、家庭服務等多個領域,成為推動經濟社會轉型的重要力量。
我們有理由相信,在物理AI的驅動下,機器人產業將迎來前所未有的“黃金十年”,為人類社會帶來更高效、更安全、更便捷的生活與生產方式。
這些新模型均可通過 Hugging Face 獲取,包括:
NVIDIA Cosmos™ Transfer 2.5和NVIDIA Cosmos Predict 2.5:開放、完全可定製的世界模型,為物理 AI 實現基於物理原理的合成資料生成與機器人策略評估的模擬支援。
NVIDIA CosmosReason 2:開放推理視覺語言模型(VLM),使智慧型手機器能夠像人類一樣看見、理解物理世界並採取行動。
NVIDIA Isaac™ GR00T N1.6:專為人形機器人打造的開放式推理視覺語言行動(VLA)模型,可解鎖全身控制能力,並借助 NVIDIA Cosmos Reason 增強推理和上下文理解。 (AI雲原生智能算力架構)