【CES 2026】突發開源!NVIDIA 宣佈推出用於物理 AI 的全新開放模型、框架和 AI 基礎設施之深度洞察!

引言:CES 2026 引爆行業革命,機器人開發的“ChatGPT時刻”正式到來

太平洋時間2026年1月5日,拉斯維加斯國際消費電子展(CES)現場,NVIDIA創始人兼首席執行長黃仁勳的一句“機器人開發的ChatGPT時刻已然到來”,為全球機器人產業定下了新的發展基調。

當天,NVIDIA正式宣佈推出用於物理AI的全新開放模型、框架和AI基礎設施,同時展示了Boston Dynamics、Caterpillar、Franka Robotics等全球領先企業基於其技術打造的多款新型機器人與自主機器,涵蓋移動機械臂、人形機器人、工業作業裝置等多個品類。

這一系列發佈並非孤立的技術更新,而是NVIDIA對機器人產業發展瓶頸的精準突破,更是對未來“專家級通用”機器人開發範式的全面重構。

長期以來,機器人產業始終面臨三大核心痛點:

一是缺乏理解物理世界的通用智能,傳統機器人依賴預設程序,難以應對動態環境變化;

二是開發流程分散複雜,模擬與現實存在巨大鴻溝,技術迭代效率低下;

三是軟硬體協同不足,AI算力與能效難以匹配機器人輕量化、高即時性的應用需求。

NVIDIA此次推出的全端技術體系——從Cosmos與GR00T開放模型,到Isaac Lab-Arena模擬框架與OSMO計算框架,再到Blackwell架構驅動的Jetson T4000硬體模組,形成了覆蓋“模型-框架-硬體-生態”的完整解決方案,旨在打通機器人開發的全生命周期,加速新一代AI驅動機器人的規模化落地。

本文將從技術核心解析、產業鏈重構影響、應用場景突破、產業趨勢展望四大維度,深度拆解NVIDIA物理AI技術體系的核心價值與行業變革意義。

一、技術核心解析:物理AI如何重構機器人的“認知與行動”能力

黃仁勳所言的“機器人開發的ChatGPT時刻”,核心在於物理AI技術的突破性進展。

不同於傳統AI聚焦數字世界的資訊處理,物理AI的核心目標是讓機器理解物理世界的運行規律,具備感知、推理、規劃與行動的閉環能力,實現從“執行指令”到“理解並決策”的跨越。

NVIDIA此次發佈的技術體系,正是圍繞這一核心目標建構的全端解決方案,其技術核心可拆解為“感知-推理-行動-訓練”四大核心模組。

1.1 核心模型 Cosmos與GR00T建構物理AI的“認知大腦”

要實現機器人對物理世界的理解,首先需要建構能夠建模物理規律、融合多模態資訊的基礎模型。NVIDIA此次推出的Cosmos系列與GR00T N1.6模型,分別解決了“物理世界認知”與“人形機器人全身控制”兩大核心問題,共同構成了物理AI的“認知大腦”。

1.1.1 Cosmos系列模型:賦予機器人“物理直覺”

傳統機器人的最大短板在於缺乏“物理直覺”——無法預判環境變化對自身動作的影響,也難以理解物體的物理屬性(如重力、摩擦力、材質特性等)。這導致機器人在執行簡單任務時,一旦遇到未預設的場景(如地面油污、物體重量變化),就容易出現失穩或任務失敗的情況。Cosmos系列模型的核心價值,正是通過生成式AI技術,讓機器人內化物理世界的基本規律,具備即時預測、跨場景遷移與多步推理的能力。

Cosmos系列包含三大核心模型,形成了“感知-預測-推理”的認知閉環:

  • NVIDIA Cosmos Transfer 2.5:作為轉換模型,其核心功能是打通模擬與現實的“域鴻溝”。傳統機器人訓練依賴大量真實場景資料,成本高昂且周期漫長,而模擬資料又因與現實環境差異過大,導致訓練出的模型難以直接遷移。
    Cosmos Transfer 2.5支援空間條件控制的風格遷移,可將Isaac Sim中的合成資料轉換為帶有真實世界噪聲、光照幹擾、鏡頭畸變的等效資料,同時保持物理參數不變;反之,也能將真實世界的稀疏資料增強為多樣化的模擬場景,大幅提升模型從模擬到現實的零樣本遷移成功率。相較於前代模型,其體積更小、運行更快,生成質量顯著提升,域間遷移的誤差累積大幅減少。
  • NVIDIA Cosmos Predict 2.5:聚焦物理世界的即時預測,解決機器人的“快思考”問題。該模型融合Text 2 World、Image 2 World、Video 2 World等生成能力,可根據文字、圖像或視訊輸入,生成連貫的環境演化序列。
    與傳統電腦視覺模型逐幀處理像素不同,Cosmos Predict 2.5直接對物理狀態的演化軌跡進行推演,能夠在毫秒級內預測環境變化對機器人動作的影響。
    例如在“機械臂倒水”任務中,傳統方法需要複雜的流體動力學方程求解,難以滿足即時性要求;而Cosmos Predict 2.5通過學習海量物理視訊資料,可即時預測下一時刻的流體分佈與不確定性,為控製器提供“是否會濺出”的預判依據,支撐機器人的動態微調。
  • NVIDIA Cosmos Reason 2:作為開放推理視覺語言模型(VLM),負責機器人的“慢思考”——跨時間尺度的理解、推理與決策。
    該模型引入了大語言模型中成熟的思維鏈(CoT)機制,並將其擴展到視覺-動作領域,能夠直接從圖像中理解語義與空間關係,完成多步任務分解與因果推理。
    在“清理廚房檯面”這類複雜任務中,傳統規劃器依賴預定義的PDDL(規劃域定義語言),難以應對場景變化;而Cosmos Reason 2可自主分解任務(如“先移開水杯→再擦拭油污→最後整理餐具”),並通過反事實推理預判不同動作的後果,主動規避高風險操作(如避免碰撞易碎物品)。

這種將感知、推理與決策緊密耦合的能力,有效解決了傳統模組化架構中資訊層層傳遞的損耗問題。

三者的協同邏輯清晰:

  • Cosmos Predict 2.5提供即時物理狀態預測,支撐毫秒級的動態反饋;
  • Cosmos Reason 2負責長周期的任務規劃與風險預判;
  • Cosmos Transfer 2.5則打通模擬與現實的資料通道,為前兩者的訓練提供高品質資料支撐,形成“預測-推理-資料迭代”的認知閉環。

1.1.2 GR00T N1.6:解鎖人形機器人的“全身控制”能力

如果說Cosmos系列模型解決了機器人“認知世界”的問題,那麼Isaac GR00T N1.6則聚焦於“如何行動”,特別是為人形機器人提供開放式的推理視覺語言行動(VLA)模型,實現全身動作的精準控制與上下文理解。

人形機器人的控制難度遠超傳統機械臂,其擁有數十個自由度,需要兼顧平衡、協調、精準操作等多重目標,傳統控制方法難以實現複雜動作的靈活適配。

GROOT N1.6的核心突破在於兩大技術創新:

一是採用MoE(混合專家)架構,實現“通專融合”的控制能力。該架構包含多個獨立的“專家”子網路,在處理不同任務時啟動對應的專家模組——例如理解自然語言指令時啟動“通用語言專家”,執行精密銲接時啟動“運動控制專家”,既保證了通用任務的適應性,又提升了專項任務的精準度。

二是深度整合Cosmos Reason 2模型,強化上下文理解與推理能力。

通過融合視覺語言推理與動作控制,GR00T N1.6可直接將人類自然語言指令轉換為全身協調的動作序列,例如將“把桌子上的檔案遞給我”拆解為“移動至桌前→識別檔案位置→調整姿態→抓取檔案→精準遞出”的連貫動作,無需人工編寫複雜的運動控製程序。

目前,Franka Robotics、NEURA Robotics、Humanoid等企業已開始利用GR00T賦能的工作流,進行機器人新行為的模擬、訓練與驗證。

Salesforce則通過整合Agentforce、Cosmos Reason與NVIDIA Blueprint,對機器人採集的視訊片段進行分析,將事件解決時間縮短了50%,充分驗證了該模型在提升任務效率方面的核心價值。

1.2 支撐框架 Isaac Lab-Arena與OSMO打通開發全流程

物理AI模型的落地,離不開高效的開發與訓練框架支撐。

長期以來,機器人開發麵臨兩大流程痛點:

一是模擬評估體系分散,基準測試依賴人工操作,難以實現規模化驗證;

二是端到端工作流複雜,需要跨工作站、雲端等異構計算資源,協同難度大,開發周期漫長。

NVIDIA此次發佈的Isaac Lab-Arena開源模擬框架與OSMO雲原生計算框架,正是針對這兩大痛點的精準解決方案,旨在實現“模擬-訓練-評估-部署”的全流程閉環。

1.2.1 Isaac Lab-Arena:標準化模擬評估的“協作平台”

模擬訓練是機器人開發的核心環節,其質量直接決定了機器人在真實環境中的性能。

但當前行業缺乏統一的模擬評估標準,不同開發者採用不同的測試體系,導致技術成果難以對比,且模擬場景與真實環境的差異過大,大幅降低了訓練效率。Isaac Lab-Arena的核心目標是建構一個開放原始碼的協作系統,實現大規模機器人策略評估與基準測試的標準化。

該框架的核心優勢體現在三個方面:

一是模組化設計,其評估層與任務層通過與光輪智能的深度合作完成建構,支援靈活配置不同任務場景與評估指標;

二是多基準相容,可直接對接Libero、Robocasa等業界領先的基準測試體系,實現測試流程的標準化,確保機器人技能在部署至物理硬體前具備穩健性與可靠性;

三是開源協作,現已在GitHub上公開發佈,開發者可基於該框架共享測試場景、驗證演算法效果,加速技術迭代。

1.2.2 OSMO:跨環境協同的“開髮指揮中心”

機器人開發涉及合成資料生成、模型訓練、軟體在環測試等多個環節,需要跨越工作站、邊緣裝置、混合雲等多種計算環境,傳統開發模式下,各環節相互獨立,資源調度複雜,嚴重影響開發效率。

OSMO作為雲原生編排框架,將機器人開發整合至單一易用的命令中心,實現了全流程的高效協同。

OSMO的核心功能包括:

一是跨環境工作流定義,開發者可通過統一介面,定義覆蓋多計算環境的工作流,實現合成資料生成、模型訓練、測試驗證的自動化執行;

二是資源智能調度,根據不同環節的算力需求,自動分配工作站、雲端等資源,提升資源利用率;

三是快速整合適配,現已開放使用,並被Hexagon Robotics等企業採用,同時整合至Microsoft Azure Robotics Accelerator工具鏈中,大幅降低了開發者的接入門檻。

1.3 硬體基石 Blackwell架構驅動的邊緣AI算力革命

物理AI模型的即時運行,需要強大的邊緣AI算力支撐。機器人尤其是人形機器人、移動作業裝置等,對硬體的輕量化、低功耗、高即時性提出了嚴苛要求。

傳統邊緣計算模組難以平衡算力與能效,無法滿足複雜物理AI模型的運行需求。

NVIDIA此次發佈的Jetson T4000模組與IGX Thor工業邊緣平台,基於Blackwell架構打造,實現了算力與能效的跨越式提升,為物理AI的邊緣落地提供了核心硬體支撐。

1.3.1 Jetson T4000:機器人的“高效小腦”

Jetson T4000是Blackwell架構下放至邊緣端的首款機器人專用計算模組,現已正式發售,千片起訂量下單價為1999美元,為Jetson Orin客戶提供了高性價比的升級路徑。

相較於上一代Jetson AGX Orin,該模組在核心性能上實現了全方位突破:

Jetson T4000的核心突破在於NVFP4 4位浮點精度推理技術。對於物理AI應用而言,感知環節的精度可適當降低,但決策與控制的即時性至關重要。

該技術允許機器人在邊緣端直接運行複雜的VLA模型,無需依賴不穩定的雲端網路,既保證了即時響應,又提升了運行安全性。

在70瓦的可配置功率範圍內,其可提供1200 FP4 TFLOPS的算力,足以支撐Cosmos與GR00T模型的即時運行,是能耗受限型自主系統的理想選擇。

1.3.2 IGX Thor:工業邊緣的“安全算力核心”

除了面向通用機器人的Jetson T4000,NVIDIA還宣佈IGX Thor將於2026年1月晚些時候上市,聚焦工業邊緣場景,提供高性能AI計算與功能安全保障。

該平台將機器人技術擴展到工業生產、建築採礦等複雜邊緣環境,具備企業級軟體支援能力,可滿足工業級應用對穩定性、安全性的嚴苛要求。

目前,AAEON、Advantech、ADLINK等眾多合作夥伴已推出搭載Thor的系統,覆蓋邊緣AI、機器人和嵌入式應用等多個領域。

1.4 生態協同 NVIDIA與Hugging Face打通開源開發鏈路

技術的規模化落地離不開生態的支撐。當前,機器人已成為Hugging Face平台上增長最快的領域,而NVIDIA的開放模型與資料集在該平台的下載量持續領先。

為進一步加速開源物理AI的開發,NVIDIA與Hugging Face達成深度合作,將開放原始碼的Isaac與GR00T技術整合到領先的LeRobot開源機器人框架中,建構了“軟硬體一體化”的開源開發生態。

此次合作的核心價值在於打通了兩大開發者社區:

  • NVIDIA的200萬機器人開發者與Hugging Face的1300萬全球AI開發者,實現了技術、工具與資源的雙向流動。
  • 具體來看,GR00T N系列模型與Isaac Lab-Arena已正式上線LeRobot庫,開發者可直接基於該框架進行模型微調和策略評估;
  • 同時,Hugging Face開放原始碼的Reachy 2人形機器人與NVIDIA Jetson Thor機器人電腦實現完全互操作,可運行包括GR00T N1.6在內的任何VLA模型;
  • Reachy Mini桌面機器人則與NVIDIA DGX Spark實現相容,支援開發者基於NVIDIA大語言模型及本地運行的語音、電腦視覺開放模型打造自訂體驗。

這種開源生態的協同,大幅降低了機器人開發的門檻,讓中小企業與個人開發者能夠快速接入頂尖的物理AI技術,加速了創新應用的孵化。

正如Hugging Face首席技術官所言:“與NVIDIA的合作將徹底改變開源機器人開發的格局,讓更多開發者能夠聚焦應用創新,而非基礎技術建構。”

二、產業鏈重構:從“碎片化”到“生態化”的全鏈路變革

機器人產業鏈傳統上呈現“上游高壁壘、中游低利潤、下游分散化”的碎片化格局。

  • 上游核心零部件(控製器、伺服系統、減速器)佔據工業機器人總成本的60%以上,利潤分配比例超過40%,但技術門檻高,長期被海外企業壟斷;
  • 中游整機製造依賴上游零部件,同質化競爭激烈,毛利率普遍偏低;
  • 下游應用場景分散,不同行業的需求差異大,難以形成規模化效應。NVIDIA此次發佈的全端技術體系,將通過“技術賦能-生態整合-成本最佳化”三大路徑,重構機器人產業鏈的價值分配與協作模式。

2.1 上游核心零部件 AI驅動的技術升級與國產化機遇

上游核心零部件是機器人產業的“卡脖子”環節,也是利潤最集中的領域。

NVIDIA的物理AI技術體系,將對上游零部件產業產生兩大關鍵影響:一是推動零部件的“智能化升級”,二是為國產零部件企業提供彎道超車的機遇。

在智能化升級方面,傳統零部件以“高精度執行”為核心目標,而物理AI時代的零部件需要具備“感知-反饋-協同”的智能能力。

例如,伺服電機需要即時採集運動資料,並與AI模型協同調整參數,以適應動態環境下的動作需求;減速器則需要具備更高的動態響應速度,配合機器人的即時微調動作。

NVIDIA的GR00T模型與Jetson硬體平台,為零部件的智能化升級提供了標準介面與算力支撐,推動上游零部件從“被動執行”向“主動協同”轉變。

在國產化機遇方面,長期以來,國內零部件企業受制於核心技術不足,難以與海外巨頭競爭。

而NVIDIA的開放模型與框架,降低了零部件企業的智能化研發門檻。

例如,國內控製器企業可基於NVIDIA的CUDA架構與GR00T模型,快速開發具備物理AI能力的智能控製器,無需從零建構演算法體系。

伺服系統企業可借助Jetson平台的算力,實現運動資料的即時分析與參數最佳化。

同時,隨著國內機器人產業政策的支援(如廣西出台的機器人產業發展政策,對核心零部件企業給予最高300萬元的年度獎勵),國產零部件企業將在技術升級與市場拓展中獲得更多助力。

此外,NVIDIA Jetson T4000的量產與普及,將帶動上游晶片供應鏈的發展。

該模組採用的Blackwell架構晶片,其國產化替代(如封裝測試、配套元器件)將為國內半導體企業提供新的市場機遇,進一步完善機器人產業鏈的國產化生態。

2.2 中游整機製造 從“組裝整合”到“應用創新”的價值躍升

中游整機製造是傳統機器人產業鏈的“薄弱環節”,長期依賴上游零部件進口,以組裝整合為主,缺乏核心技術,毛利率普遍低於20%。NVIDIA的全端技術體系,將徹底改變中游整機企業的發展模式,推動其從“組裝商”向“應用解決方案提供商”轉型。

首先,降低研發成本與周期。傳統整機企業需要投入巨額資金建構AI演算法、模擬平台與硬體適配體系,研發周期長達1-2年。

而基於NVIDIA的Cosmos模型、Isaac Lab-Arena模擬框架與Jetson硬體,整機企業可直接復用成熟的技術模組,聚焦行業應用場景的定製化開發,研發周期可縮短至3-6個月,研發成本降低50%以上。

例如,智元機器人基於NVIDIA技術推出的面向工業和消費行業的人形機器人,以及配套的Genie Sim 3.0模擬平台,正是借助NVIDIA的技術賦能,快速實現了產品落地與迭代。

其次,提升產品競爭力。借助NVIDIA的物理AI技術,中游整機企業的產品將具備“通用智能”能力,能夠適配更多場景,擺脫同質化競爭。

例如,NEURA Robotics推出的第3代人形機器人(由保時捷設計),基於GR00T模型與Jetson Thor平台,具備精細化控制能力,可同時適配工業裝配、服務接待等多個場景;Richtech Robotics的移動人形機器人Dex,借助NVIDIA的導航與操作技術,能夠在複雜工業環境中實現精細操作與自主導航,大幅提升了產品的市場競爭力。

最後,推動商業模式創新。隨著產品競爭力的提升,中游整機企業將從“賣裝置”向“提供服務”轉型,例如通過機器人租賃、按效果收費等模式,提升客戶粘性與長期盈利能力。

例如,智元機器人推出的國內首個機器人租賃平台“擎天租”,正是基於其技術領先的機器人產品,開啟了新的商業模式探索。

2.3 下游應用場景 從“單一化”到“規模化”的全面滲透

下游應用場景的分散化是制約機器人產業規模化發展的關鍵因素。傳統機器人主要應用於汽車製造、電子加工等少數標準化場景,而醫療、建築、消費等領域的應用相對有限。

NVIDIA的物理AI技術體系,通過提升機器人的環境適應性與任務通用性,將推動下游應用場景從“單一化”向“規模化”全面滲透,尤其是在工業、醫療、建築採礦、消費四大領域實現突破性進展。

在工業領域,機器人將從“固定工位操作”向“全流程協同作業”升級。例如,富臨精工工廠引入的近百台遠征A2-W機器人(基於NVIDIA技術),已實現與AMR的協同作業,自主完成周轉箱的搬運、轉移與精準放置,覆蓋三條不同裝配線,涉及20余種物料,承載重量提升至14千克,且未發生一起物料傾倒事故。

隨著NVIDIA技術的普及,更多製造企業將實現“機器人+智能製造”的升級,推動工業機器人的規模化應用。

在醫療領域,物理AI技術將推動手術機器人與輔助診療裝置的精準化升級。

  • LEM Surgical借助NVIDIA Isaac for Healthcare和Cosmos Transfer模型,訓練Dynamis手術機器人(搭載Jetson AGX Thor與Holoscan),大幅提升了手術操作的精準度;
  • XRLabs則利用Thor平台與Isaac for Healthcare,為手術內窺鏡提供即時AI分析支援,幫助外科醫生精準判斷手術部位,降低手術風險。這些應用將推動醫療機器人從“高端試點”向“常規應用”普及。

在建築採礦領域,Caterpillar與NVIDIA的深化合作將推動自主作業裝置的規模化落地。

建築與採礦行業屬於典型的“危險、骯髒、枯燥”場景,對機器人的需求迫切,但環境複雜,傳統裝置難以適配。

Caterpillar將借助NVIDIA的物理AI技術,開發具備自主導航、精準作業能力的重型裝置,提升作業效率與安全性。

在2026年1月7日的CES主題演講中,Caterpillar CEO Joe Creed與NVIDIA高管將披露更多合作細節,預計將推出多款基於Blackwell架構的自主作業裝置。

在消費領域,人形機器人將從“高端玩具”向“家庭助手”轉型。

  • LG Electronics發佈的全新家用機器人,基於NVIDIA技術,可執行各種室內家務,具備動態環境適應能力,能夠應對家庭中的複雜場景(如躲避障礙物、處理不同材質的物品);
  • 宇樹科技推出的小型人形機器人Unitree R1,起售價僅2.99萬元,借助NVIDIA的輕量化AI技術,實現了低成本與高智能的平衡,大幅拉近了與人消費市場的距離。

2.4 價值分配重構 生態主導者引領的利潤再平衡

隨著NVIDIA全端技術體系的普及,機器人產業鏈的價值分配將發生重大變化:從“上游零部件企業主導”向“生態主導者+應用創新者”共同主導的格局轉變。

  • NVIDIA作為生態主導者,將通過“模型授權+硬體銷售+生態服務”獲取穩定的利潤回報;
  • 而中游整機企業與下游應用解決方案提供商,將通過場景創新與服務增值,提升利潤佔比;
  • 上游零部件企業則需要通過智能化升級,維持其利潤優勢。

這種價值分配的重構,將推動產業鏈從“零和博弈”向“共贏發展”轉變。

  • NVIDIA通過開放模型與框架,幫助上游零部件企業實現智能化升級,提升其產品附加值;
  • 中游整機企業借助NVIDIA技術推出高競爭力產品,帶動上游零部件的需求;
  • 下游應用場景的規模化落地,又將反哺中游整機與上游零部件企業的發展,形成良性循環。

據行業預測,隨著這種生態化格局的形成,2027年將成為中國機器人產業的“大規模商業化元年”,整個產業鏈的規模將突破兆級。

三、應用場景突破:物理AI技術的落地案例與價值驗證

技術的價值最終需要通過應用場景來驗證。NVIDIA此次發佈的物理AI技術體系,已在工業、醫療、消費、建築採礦等多個領域實現落地,通過一系列標竿案例,充分驗證了其在提升效率、降低成本、保障安全等方面的核心價值。

本節將重點解析四個典型應用場景的落地案例,深入探討物理AI技術的實際應用效果。

3.1 工業製造 富臨精工的“人形機器人+智能製造”升級

富臨精工是國內領先的汽車零部件製造商,其生產車間涵蓋多條裝配線,物料搬運、上料等環節傳統上依賴人工操作,存在效率低、誤差率高、勞動強度大等問題。

為實現智能製造升級,富臨精工與智元機器人達成合作,引入近百台基於NVIDIA Jetson Thor與GR00T模型的遠征A2-W人形機器人,建構了“智能中樞平台+人形機器人+AMR”的協同作業體系。

該體系的核心優勢在於三個方面:

一是全流程自動化,智能中樞平台即時監控線邊物料剩餘量,當觸及預設水位線時,自動觸發配送任務,人形機器人與AMR協同作業,自主完成周轉箱的搬運、轉移與精準放置,無需人工干預;

二是動態適應性強,借助NVIDIA Cosmos Reason 2模型的推理能力,人形機器人能夠應對車間內的動態環境變化,如躲避移動的工人與裝置、調整物料放置角度等;

三是規模化擴展能力,從最初的1個搬運工位擴展至4個,覆蓋三條不同裝配線,涉及物料種類從4種增至20余種,承載重量從5-6千克提升至14千克,且線邊上料場景至今未發生一起物料傾倒事故。

據富臨精工相關負責人介紹,引入該體系後,物料搬運效率提升了60%,人工成本降低了40%,同時物料配送的誤差率降至0.1%以下。

這一案例充分驗證了NVIDIA物理AI技術在工業製造場景的規模化應用價值,為其他製造企業的智能化升級提供了可複製的方案。

3.2 醫療健康 LEM Surgical的精準手術機器人訓練體系

手術機器人是醫療領域的高端裝備,其訓練需要大量的臨床資料與模擬場景,但傳統訓練方式存在資料稀缺、風險高、周期長等問題。

  • LEM Surgical作為專注於手術機器人研發的企業,借助NVIDIA Isaac for Healthcare和Cosmos Transfer 2.5模型,建構了高效的手術機器人訓練體系,用於其Dynamis手術機器人的研發與最佳化。
  • Dynamis手術機器人搭載了NVIDIA Jetson AGX Thor與Holoscan平台,具備高精度的手術操作能力。

其訓練體系的核心的是Cosmos Transfer 2.5模型的域遷移能力:

  • 通過將Isaac Sim中的模擬手術場景,轉換為帶有真實手術環境噪聲、光照條件的等效資料,大幅提升了模擬訓練的真實性;
  • 同時,將少量真實手術資料增強為多樣化的模擬場景,解決了臨床資料稀缺的問題。

借助這一體系,LEM Surgical的研發團隊能夠快速驗證手術機器人的操作策略,最佳化運動控制參數,大幅縮短了研發周期。

此外,XRLabs利用NVIDIA Jetson Thor與Isaac for Healthcare,開發了智能手術內窺鏡系統。該系統通過外接手術內鏡採集即時圖像,借助Cosmos Predict 2.5模型的即時預測能力,分析手術部位的解剖結構與操作風險,為外科醫生提供即時引導,降低了手術難度與併發症風險。目前,該系統已在多家醫院開展試點應用,手術精準度提升了30%,手術時間縮短了20%。

3.3 消費服務 LG Electronics的家用智慧型手機器人

家用機器人是消費領域的重要增長點,但傳統家用機器人功能單一,難以應對複雜的家庭環境。

LG Electronics在CES 2026上發佈的全新家用機器人,基於NVIDIA的Cosmos系列模型與Jetson T4000模組,具備全方位的家務處理能力與動態環境適應能力。

該機器人的核心優勢在於其強大的物理AI能力:

  • 通過Cosmos Reason 2模型,能夠理解自然語言指令,並分解為具體的家務任務,如“清理客廳檯面”可拆解為“整理物品→擦拭灰塵→分類收納”;
  • 借助Cosmos Predict 2.5模型,能夠即時預測動作後果,如避免碰撞易碎物品、調整拖地力度以適應不同地面材質;
  • 依託Jetson T4000的高效算力,實現了即時感知與決策,響應速度提升至毫秒級。

此外,該機器人還具備自主充電、故障自診斷等智能功能,能夠適應不同戶型的家庭環境。

LG Electronics相關負責人表示,這款家用機器人的目標是成為“家庭助手”,而非簡單的“家務工具”,其定價將控制在萬元以內,以實現規模化普及。該產品的推出,標誌著消費級家用機器人正式進入“通用智能”時代。

3.4 建築採礦 Caterpillar的自主作業裝置升級

建築與採礦行業是典型的高危、高勞動強度行業,對自主作業裝置的需求迫切。Caterpillar作為全球領先的工程機械製造商,正在擴大與NVIDIA的合作,將先進的AI和自主系統引入建築和採礦領域的裝置及作業現場。

基於NVIDIA的Blackwell架構與物理AI模型,Caterpillar正在開發多款自主作業裝置,包括自主挖掘機、自主礦用卡車等。

這些裝置具備三大核心能力:

一是自主導航,借助Cosmos模型的環境感知與推理能力,能夠在複雜的施工現場與礦區環境中精準定位,躲避障礙物;

二是精準作業,通過GR00T模型的動作控制能力,實現挖掘、裝載、運輸等作業的精準執行,提升作業效率;

三是協同作業,多台裝置可通過OSMO框架實現資料共享與協同調度,形成自主作業車隊。

據Caterpillar透露,其自主礦用卡車已在澳大利亞某金礦開展試點應用,借助NVIDIA的技術,作業效率提升了25%,事故率降低了80%,同時減少了人工成本。

在2026年1月7日的CES主題演講中,Caterpillar CEO Joe Creed將與NVIDIA高管共同披露更多合作細節,預計將推出面向建築行業的首款自主挖掘機,計畫2027年實現規模化量產。

四、產業趨勢展望:物理AI驅動下的機器人產業未來圖景

NVIDIA此次發佈的物理AI技術體系,不僅解決了當前機器人產業的核心痛點,更勾勒出未來機器人產業的發展圖景。

結合行業發展規律與技術迭代趨勢,未來3-5年,機器人產業將呈現“通用化、輕量化、開源化、規模化”四大核心趨勢,而NVIDIA將在這一處理程序中扮演關鍵的引領角色。

4.1 趨勢一 從“專用機器人”到“專家級通用機器人”的跨越

傳統機器人多為“專用裝置”,針對特定場景開發,功能單一,難以跨場景應用。而物理AI技術的發展,將推動機器人從“專用”向“通用”跨越,最終實現“專家級通用”的目標——即能夠快速學習多種任務,適配不同行業場景的需求。

NVIDIA的Cosmos與GR00T模型,正是這一趨勢的核心驅動力。

通過內化物理世界的通用規律,機器人能夠快速適應新場景、學習新任務,無需針對每個場景進行重新程式設計。一款基於GR00T模型的人形機器人,既可以在工廠完成精密裝配,也可以在醫院協助護理,還可以在家庭處理家務,只需通過少量場景資料微調即可實現功能適配。

據行業預測,到2028年,專家級通用機器人的市場佔比將超過30%,成為機器人產業的主流產品形態。

4.2 趨勢二 硬體輕量化與能效比的持續提升

機器人尤其是人形機器人、移動服務機器人,對硬體的輕量化、小型化、低功耗提出了嚴苛要求。

隨著Blackwell架構的普及與技術迭代,邊緣AI算力模組將實現“更高算力、更低功耗”的持續突破,推動機器人硬體的輕量化發展。

NVIDIA的Jetson系列模組已展現出這一趨勢:

  • 從Jetson AGX Orin到Jetson T4000,算力提升4.3倍,而功耗控制在70瓦以內;
  • 未來,隨著晶片製程的進步與架構的最佳化,Jetson系列模組的算力有望進一步提升,功耗則持續降低,甚至可能出現50瓦以下、算力突破2000 TFLOPS的產品。

這將推動機器人的小型化發展,如宇樹科技的小型人形機器人、松延動力的Bumi小布米等輕量化產品將成為消費市場的主流,進一步擴大機器人的應用範圍。

4.3 趨勢三 開源生態成為創新核心驅動力

機器人產業的創新需要大量的技術積累與資源投入,單一企業難以完成全鏈條的創新。

開源生態將成為未來機器人產業創新的核心驅動力,吸引全球開發者共同參與技術突破與應用創新。

NVIDIA與Hugging Face的合作,正是開源生態發展的重要里程碑。隨著LeRobot框架的普及,越來越多的開發者將接入NVIDIA的物理AI技術體系,孵化出更多創新應用。

同時,開源生態的發展將推動技術標準的統一,降低行業的協作成本,加速創新成果的轉化。預計到2027年,全球將有超過50%的機器人創新應用基於開源框架開發,開源生態將成為機器人產業競爭的核心戰場。

4.4 趨勢四 規模化落地與成本快速下降

隨著技術的成熟與生態的完善,機器人的規模化落地將推動成本快速下降,形成“規模效應-成本下降-需求擴大”的良性循環。

據資料顯示,2025年國內人形機器人出貨量預計達1.8萬台,2026年有望攀升至6.25萬台;多位行業專家預測,2026年國內人形機器人產量將突破10萬台,2028年有望達到百萬台級。

成本下降的主要驅動力包括三個方面:

一是核心零部件的國產化替代,如國內企業已實現減速器、伺服系統的批次供貨,成本較海外產品降低30%以上;

二是規模化生產帶來的製造費用降低,隨著產量的提升,整機製造的單位成本將大幅下降;

三是開源技術的應用,降低了研發成本。預計到2030年,人形機器人的售價將降至5萬元以下,消費級市場將全面爆發。

4.5 挑戰與應對 技術、倫理與政策的協同推進

儘管機器人產業前景廣闊,但仍面臨技術、倫理與政策三大挑戰。

  • 在技術層面,機器人的泛化能力、安全性仍需進一步提升,尤其是在複雜動態環境中的可靠性;
  • 在倫理層面,機器人的廣泛應用可能帶來就業結構變化、隱私洩露等問題;
  • 在政策層面,相關的法律法規、標準體系尚未完善,如機器人決策失誤的責任界定、資料安全規範等。

應對這些挑戰,需要政府、企業與科研機構的協同推進:

一是加強核心技術研發,聚焦泛化能力、安全性等關鍵痛點,推動技術標準的統一;

二是建立健全倫理規範與法律法規,平衡技術創新與社會影響;

三是出台針對性的政策支援,如職業培訓、資料安全保障等,確保機器人產業的健康發展。

NVIDIA作為行業引領者,已通過開放模型與框架,推動技術標準的統一;同時,其與全球企業的合作,也在積極探索機器人應用的倫理邊界。

五、結語:物理AI開啟機器人產業的“黃金十年”

CES 2026上NVIDIA的系列發佈,標誌著機器人產業正式進入物理AI驅動的新時代。

  • 從技術核心來看,Cosmos與GR00T模型建構了機器人理解物理世界的“認知大腦”,Isaac Lab-Arena與OSMO框架打通了開發全流程,Jetson T4000硬體模組提供了高效算力支撐,形成了覆蓋“模型-框架-硬體-生態”的全端解決方案;
  • 從產業鏈影響來看,其推動上游零部件智能化升級、中游整機企業嚮應用創新轉型、下游場景規模化滲透,重構了產業價值分配模式;
  • 從應用前景來看,工業、醫療、消費、建築採礦等多個領域的落地案例,充分驗證了技術的實用價值。

黃仁勳所言的“機器人開發的ChatGPT時刻”,不僅是技術的突破,更是產業範式的變革。

未來十年,隨著物理AI技術的持續迭代、開源生態的不斷完善、成本的快速下降,機器人將從“工業裝備”全面走向“生活助手”,深度融入製造業、醫療健康、家庭服務等多個領域,成為推動經濟社會轉型的重要力量。

  • 對於企業而言,接入NVIDIA的物理AI技術體系,將成為把握產業機遇的關鍵;
  • 對於行業而言,建構開放協同的生態,推動技術標準的統一,將加速產業的規模化發展;
  • 對於社會而言,擁抱機器人技術帶來的變革,做好就業轉型與倫理規範,將實現技術創新與社會福祉的共贏。

我們有理由相信,在物理AI的驅動下,機器人產業將迎來前所未有的“黃金十年”,為人類社會帶來更高效、更安全、更便捷的生活與生產方式。

這些新模型均可通過 Hugging Face 獲取,包括:

NVIDIA Cosmos™ Transfer 2.5和NVIDIA Cosmos Predict 2.5:開放、完全可定製的世界模型,為物理 AI 實現基於物理原理的合成資料生成與機器人策略評估的模擬支援。

NVIDIA CosmosReason 2:開放推理視覺語言模型(VLM),使智慧型手機器能夠像人類一樣看見、理解物理世界並採取行動。

NVIDIA Isaac™ GR00T N1.6:專為人形機器人打造的開放式推理視覺語言行動(VLA)模型,可解鎖全身控制能力,並借助 NVIDIA Cosmos Reason 增強推理和上下文理解。 (AI雲原生智能算力架構)