納德拉達沃斯警示:AI別成泡沫,沒電全是空談

微軟CEO薩蒂亞·納德拉在達沃斯論壇提出清醒論斷:除非人工智慧的紅利能廣泛惠及除了矽谷和富裕國家之外的地方,否則當前的AI熱潮可能淪為投機泡沫。而能源成本最終將決定那些國家能贏得AI競爭,“token”代幣會是新的全球大宗商品。
截圖來自世界經濟論壇官網直播視訊

“未來,任何地方的GDP增長都將與‘每美元每瓦特產生的算力’直接相關。”

1月20日,微軟CEO薩蒂亞·納德拉(Satya Nadella)在瑞士達沃斯小鎮舉辦的世界經濟論壇第56屆年會上參與了一場對談,談及了AI的現狀及未來,並重點論述了他對AI發展與能源成本、AI泡沫及數字主權、AI時代組織轉型等問題的看法。

貝萊德董事長兼CEO、世界經濟論壇臨時聯合主席勞倫斯·芬克(Laurence D. Fink)主持了對談。

電力短缺將是制約AI發展的最關鍵瓶頸之一。去年11月,納德拉在與OpenAI CEO薩姆·奧爾特曼(Sam Altman)談及了該話題,引發廣泛關注。

在最新達沃斯對談中,他再次提示,需要高度重視“每美元每瓦特產生的算力”。

他分析稱,算力定價目前每三個月就會下降一半,人們已經開始規劃如何利用算力創造盈餘。但從總體擁有成本的角度考量,能源成本、資料中心成本等都要計算進去。

當我們將算力視作新的商品,而經濟體和公司的目標變成“將算力轉化為經濟增長”時,誰擁有更低的成本、更便宜的商品,誰就能取得先機。

當芬克問到對“缺乏自己的電力、高度依賴進口的歐洲”的建議時,納德拉直言,歐洲的核心競爭力在於用自己的產品滿足全球需求,而非僅僅保全歐洲內部的安全。在AI發展中,該區域的當務之急應該是確保企業能獲取全球資料來訓練AI,並將本地建設與全球思維結合,以維持領導力,而非僅僅關注安全、監管。

對於市場高度關注的“AI泡沫”,納德拉稱,如果對AI的關注及價值只停留在科技圈、生產側,那麼問題必然會出現。只有當AI的好處廣泛擴散到製藥、金融等各行各業的需求,真正解決實際問題並帶來全球性的生產率提升與地方經濟盈餘時,才能避免泡沫,實現可持續增長。

實際上,微軟也並非當下最受市場矚目的“AI贏家”。Business Insider曾報導,納德拉有意推動微軟轉型,並重新思考其在AI時代的商業模式,為此還聘用了曾在公司雲端運算發展中做出貢獻的羅爾夫·哈姆斯(Rolf Harms)擔任AI經濟學顧問。

在最新的訪談中,他提到,初創公司更能快速使用並借助新工具提升生產力,但快速實現規模化難度仍然不小。而大型組織雖有資料、人際關係、專業知識等優勢,但仍面臨根本性挑戰,必須通過“新的生產函數”將其轉化為實際生產力,否則將被超越。

他認為,總體來說大型企業面臨的管理調整將會更大,而這場轉型的本質則是對領導力意志的考驗,任何企業的自滿都可能導致其在激烈競爭中落後。

AI徹底顛覆了組織內的資訊流動方式,帶來“資訊流扁平化”的革命,企業也必須主動利用技術重構工作流程,並準備好高品質的“上下文”供AI學習,完成工作流程的重塑。

納德拉還重點強調,人們完全沒能重視AI時代“企業主權”的重要性。他建議企業必須捍衛自身的“AI主權”,將公司獨特的隱性知識和專有資料嵌入並控制在自己擁有的模型之中,而非僅僅依賴外部通用模型,從而防止核心企業價值的流失。

對於可預見的未來,他認為不會有一個大模型佔據統治地位,而在“多模型時代”,企業的競爭優勢不在於選擇一個“最佳模型”,而在於掌握 “編排”的藝術,整合各類模型和資料,最終創造出專屬於自身的、能驅動關鍵業務成果的AI能力與智慧財產權。

“誰能解決這個問題,誰就將取得進步。”他表示。

以下為納德拉與芬克對談實錄,經鈦媒體編輯整理:

勞倫斯·芬克:我們先來談談人工智慧,這幾乎是當下每個人心中最關心的話題,它關乎商業、技術和社會的交匯。薩蒂亞,你知道,我們正在將AI從一種實驗性的、我們總是談論的未來事物,變成今天的基礎性現實。它現在不僅是公司的基礎,而且真正開始成為國家和整個社會的基礎。你處在這場技術變革的最前沿,應該比其他人更瞭解這些。

基於此,我想問幾個問題。首先,你曾將AI描述為一次平台級變革,這是什麼意思?第二個問題,你認為未來幾年這種轉變將走向何方?第三個問題是,我們快進幾年,比如五年後當我們回顧今天時,有那些事會是那時顯而易見,而今天卻不太清晰的?

薩蒂亞·納德拉:首先,很高興再次來到這裡。事實上,昨天我讀了你為論壇開幕寫的致詞,信中有一行話我印象很深。你提到,在AI方面,我們所有人面臨的真正問題是,如何確保AI的擴散得以實現並且迅速發生?如何讓模型、資料和基礎設施更均衡地傳播,從而在各處創造盈餘?

從某種意義上說,我思考這個問題的方式是,這始終是計算的演進軌跡。

你可以回顧過去30年或70年的歷史,核心始終是:能否將關於人、地點和事物的資訊數位化,然後建立分析和預測能力。這就是大型機、小型機、客戶端-伺服器時代、網路時代、移動雲時代所做的事情。

所以,無論那種範式或平台,這都是一條連續的弧線,即通過數字形式進行推理,來更好地理解這個世界。因為在某種意義上,一旦你將這些資訊數位化,你就可以使用像軟體這樣更具延展性的資源。它沒有相同類型的邊際成本經濟學限制,這使我們能夠建立更多的洞察力和能力。在這個背景下,我認為AI屬於同一類別,至少和網路、網際網路、移動、PC或雲一樣重要,甚至可能更重要。

因此,在我看來,我們目前所處的階段,就拿軟體工程領域發生的事情來說,主要是一項知識工作,可以說是精英知識工作。

事實上,我對這一代AI及其能力的信念,最初是當我看到GitHub Copilot完成程式碼補全時建立起來的?長久以來,我們一直夢想著,一名軟體開發人員何時才能預測下一個詞或下一行程式碼?突然間,AI模型就開始讓這些實現了。然後你說,好吧,如果我能做到這一點,那麼我是否可以通過進入聊天會話並提出任何問題,來恢復開發者的工作流,讓它給出答案,然後用在編碼流程中?這就是接下來發生的事情。然後你又會說,好吧,如果這行得通,我能給它分配小任務嗎?那就是“代理AI”。現在你有了完全自主的代理,你可以把你的整個項目交給AI了,而且它可以7天24小時不間斷的工作。我的意思是,要讓這些東西長時間保持連貫性,我們還有一段路要走。但不管怎樣,它正變得越來越好。有趣的是,你看,軟體開發人員在其中仍然擁有很大的自主權,對吧?這就是為什麼我仍然認為,把這些東西想像成存在於人類能動性領域之外的事物並不正確。

事實上,或許可以這樣理解:比如在80年代初,如果有人告訴我們,將有40億人每天早晨醒來開始打字。你只會問為什麼,對吧?我們有一個打字員池就夠用了,我們不需要40億人打字。但事情就這樣發生了。我們發明了“知識工作”這個全新的類別,人們開始真正使用電腦來放大我們試圖通過軟體實現的目標。我認為在AI的背景下,同樣的事情將會再次發生。這並不意味著硬核編碼將永遠保持硬核編碼的狀態。只是抽象層級會改變,但我們也將擁有程式碼作為輸出,就像文件一樣。事實上,從我在92年加入微軟那天起,比爾就一直強調的一件事就是:文件、網站和應用程式之間真正的區別是什麼?答案是缺乏能夠自我轉換的軟體。

有趣的是,AI最終給了我們這種能力,對吧?我可以寫一份文件。我可以說,不,我不想要文件,我想要一個網站。它就會用程式碼把那份文件轉換成一個網站。我說,我不喜歡這個網站,我想要一個應用。它會寫更多的程式碼來轉換它,使得推理能力、預測能力、採取行動的能力能夠長期保持連貫,這一切都在改進。而我們的工作是利用這一點,就像你和貝萊德正在做的事情一樣,對吧,當你把Copilot Plus和Aladdin這樣的東西結合起來,來提高公司內部做決策時的生產力時,你們就是在利用這一點。

勞倫斯·芬克:我可以告訴你,在我們的公司,過去需要12小時計算的事情,現在只需要幾分鐘。即使需要處理著14兆美元的資金,涉及數十萬個不同的授權,我們也可以即時完成。對我來說,如果沒有今天的技術和AI,我們將無法以我們當前的規模來運作。

薩蒂亞·納德拉:沒錯。所以在我看來,如果我們能夠真正利用這些算力來改變生產率曲線,那麼到處都會產生盈餘,而這正是真正的目標。

勞倫斯·芬克:是的,不過也可能令人不安。這會意味著更少的勞動力需求嗎?我們所說的盈餘是什麼意思?所以,我要把這個問題和我第二個關於AI擴散的問題聯絡起來。對我來說,AI對社會乃至對一個更平衡世界的全部意義,在於確保它在全球範圍內擴散、可及和可用。那麼,你能描述一下這個過程嗎?這個跨越經濟體、公司和國家的過程,將如何展開?

薩蒂亞·納德拉:我認為這才是真正的問題。因為當前的時代精神有點在於對AI抽象形式或其作為技術的讚賞。但我認為,我們作為一個全球共同體,必須達到這樣一個點,即我們利用它來做一些有用的事情,從而改變人民、社區、國家和行業。否則,我認為沒有多大意義。事實上,我認為如果我們不能做到這一點,不能改善健康結果、教育成果、公共部門效率、私營部門競爭力的話,我們甚至會迅速失去社會的認可,無法將能源這樣的稀缺資源用於生成算力。顯然我提到的這些才是最終目標。

因此,我認為擴散就是一切。它的發生方式是這樣的,在供應方面,每個國家需要推動的,是每美元每瓦特產生的算力必須變得更高效、更好。所以在某種程度上,甚至我們兩家公司在全球所做的投資,也是在試圖確保供應到位,這包括從晶片開始,一直到最終部署在各處的“算力工廠”。順便說一下,不會只有一個算力工廠。這種算力工廠將是第一種擴散到全球各地的東西,就像電力一樣。你只需要一個無處不在的能源和算力網路,然後它就能驅動其餘的經濟。我認為這是一方面。

然後,需求方面,我們可以說,每家公司都必須開始使用它。回顧過去,即使是PC首次出現或個人計算時代開始時,我記得賈伯斯有一個很好的比喻,他稱之為“心靈的自行車”,比爾·蓋茲也有一個比喻,我記得是“指尖的資訊”。這兩個比喻都很棒,這就是事情的本質,它是一種工具,我可以用它來獲取指尖的資訊,或將其作為認知放大器。

現在我認為我們擁有的正是這個。從某種意義上說,作為知識工作者,你現在可以接觸到無限的智慧。圖靈獎得主拉吉·雷迪有一個關於AI的絕妙比喻,甚至在生成式AI出現之前他就說過。他說,它要麼是認知放大器,要麼是守護天使。

所以,如果你這樣看待AI,那麼在全球化勞動力中,醫生可以在接觸病人時花更多的時間在病人身上,因為AI正在做轉錄並將記錄輸入電子病歷系統,輸入正確的帳單程式碼,從而使醫療保健行業、提供者和患者都得到更好的服務。這是一個我們都能從中受益的結果。

所以我覺得,最終這需要私營部門和公共部門的真正領導力來確保擴散發生。另外,我要提到的另一點是“模式”。從某種意義上說,擴散與一件事高度相關,那就是有多少人掌握了使用這項技術的技能。

有趣的是,我認為如果移動時代教會了我們一件事,那就是它實際上與PC時代發生的事情不同。我記得即使是在全球南方成長,學習Excel技能或Word技能與找到工作之間都曾經有很直接的關係。現在,移動時代的模式是什麼?它創造了類似的機會,但更多是由消費驅動的,比如創作者經濟等等。但現在它應該是關於,這就是你如何獲得一份醫療保健工作,或者一份金融工作,或者如何在專業上取得進步,這是一種回歸。人們會說,哦,我掌握了這項AI技能,現在我在實體經濟中成為了更好的產品或服務提供者。

勞倫斯·芬克:所以,很容易看出移動技術及其擴散如何改變了經濟,尤其是在全球南方。你知道,對我來說,我剛讀了一份研究報告,說迄今為止AI的應用嚴重偏向於受過教育的人群或經濟體。那麼,這會不會造成更大的分化,更多的極化?我們如何確保擴散是均勻的?我們如何確保不會讓社會或世界的主要部分掉隊?因為我認為這將成為我們前進道路上的大問題。

薩蒂亞·納德拉:是的,通過已經建立的通道,我們有能力相當均勻地在世界各地輸送算力,比PC時代甚至移動時代初期要好得多。因為即使是智慧型手機,特別是智慧型手機,要滲透到全世界也花了很長時間,而現在情況不同了。這些模型及其輸出幾乎在任何地方都可用。所以對我來說,問題是如何找到有意義的應用場景。

事實上,我經常回顧的一個演示,我想那是在2023年初,一位印度農村的農民能夠使用一個基於早期GPT-3甚至2.5建構的聊天機器人,用當地語言來推理他聽說過的某些農業補貼,甚至在那個非常早期的階段,就能讓它展現出一些代理行為,比如幫我填完一張表格。所以在某種意義上,它把能動性帶給了那些原本可能沒有的人,因為技術變得更易得了。

所以我確實認為,即使在全球南方,主動權也在我們手中,利用它來創造更多原本不存在的機會。但我認為必要的條件仍然是:是否有資本投入?是否有吸引資本的環境?我們作為超大規模雲提供商,正在全球範圍內投資,包括全球南方,我們也更加需要一個能吸引投資的營商環境。

勞倫斯·芬克:而且你也看到了需求。

薩蒂亞·納德拉:是的,需求就在那裡。所以問題是,如何制定一套政策,既能讓資本流入,又能讓它落地找到與當地的結合點。順便說一下,有些事情只有私人資本能做,有些事情只有公共資本能做,例如電網,在大多數國家,電網基本上是由政府驅動的公共事業。所以,如果你沒有一個複雜的電網或其他現代化的方法,那將會拖累發展。當然,也有很多關於“電表後端”解決方案的討論等等,我們可以有所作為。

勞倫斯·芬克:在美國可以,但許多國家不行。

薩蒂亞·納德拉:沒錯,而且從長期來看,這是不可持續的。我的意思是,對我來說,一個長期可持續、擴展的解決方案是,讓所有這些“算力工廠”成為實體經濟的一部分,連接到電網,連接到電信網路,並進行輸送。就像我們輸送位元一樣,你必須輸送算力加位元。這將驅動大規模的發展,無論是在全球南方還是在發達國家。

勞倫斯·芬克:很多人談論可能存在AI泡沫。作為投資者,我們看到的最重要的事情是技術的民主化和擴散,這確實會改變需求,而擴散最快的公司或國家將成為最終的贏家,而不是技術的創造者。

薩蒂亞·納德拉:這正是關鍵。要讓這不成為一個泡沫,從定義上講,就需要讓這項技術的好處更均勻地傳播。

我認為,判斷它是否是泡沫的一個跡像是,如果我們談論的僅僅是科技公司,只談論技術方面發生了什麼,那麼從定義上講,這只是純粹的供給側。最終,如果我們不談論,例如這裡有一家製藥公司或一種藥物進入市場非常成功,是因為AI加速了臨床試驗等案例,就出現了問題?

所以,我並不是在空談。我更加確信,這項技術將建立在雲和移動的軌道之上,更快地擴散,改變生產率曲線。並在世界各地帶來地方性盈餘和經濟增長,而不僅僅是由資本支出驅動的經濟增長,因為那只是某個時間點的狹義計算。

我們在發達國家尤其能看到這種情況,但我所說的資本,雖然我們確實在美國投入了很多,但也有約50%分佈在世界各地。所以有趣的是,這取決於全球各地的需求,而全球各地的需求只有在那裡存在地方性盈餘時才會出現。這就是我看待“AI泡沫”的方式。

勞倫斯·芬克:那麼讓我們再深入一點。隨著AI擴散,顯然組織、公司、政府都必須演進。現在進入需求側,你認為在AI世界裡,組織的結構將如何變化?我相信微軟自身也在演進,所以也許你可以告訴觀眾,你如何看待這種擴散在公司層面或政府層面的利用,這最終將怎樣創造需求,從而消除對泡沫的恐懼。

薩蒂亞·納德拉:我認為這可能是所有新技術帶來的重大挑戰之一:當工作產物和工作流程發生變化時,意味著我們作為公司必須改變工作方式。事實上,我記得幾年前見過忠利保險的CEO,他描述說他加入公司時還在前PC時代,他描述了他們如何通過電傳、辦公室間備忘錄與現場代理合作,突然PC出現了,人們開始用電子表格和電子郵件傳送,整個工作流程和過程都改變了。

同樣,我認為隨著AI爆發,你將開始看到工作流程的實際變化。

事實上,對我來說,來達沃斯開會,不管我有多少場雙邊會議,準備這些會議都有一個特定的工作流程。就是我的現場團隊會準備簡報,傳到總部,再進一步提煉。從我92年加入公司到幾年前,這幾乎沒什麼變化。而現在,我直接去Copilot說,嘿,我要見勞倫斯·芬克,請給我一份簡報。它就會給我一份。順便說一下,一個好處是它給了我一個全景檢視,它知道我們作為客戶在與你們做什麼,也知道我們作為你們的客戶在做什麼,以及介於兩者之間的所有投資事宜。所以,它捕捉資訊的能力是前所未有的。事實上,我會立即把那份簡報分享給我所有職能部門的所有同事?

想想看,這徹底顛覆了組織內的資訊流動方式。不是那種經典的:我們有一個組織,我們有部門,我們有專業分工,資訊慢慢向上傳遞。不,它實際上是扁平化了整個資訊流。一旦你開始這樣做,你就必須重新設計結構。所以當前的結構可能不再合理,因為你希望人們能夠以資訊自由流動的方式工作。

所以,這讓我想到,如果非要總結一個公式,我認為要從心態開始。我們領導者應有的心態是:我們需要思考如何用技術改變工作流程,然後這需要技能。所以你不能抽象地談論這個。你必須使用它,你必須信任它。你不能只是害怕它,它必然將會擴散。

另一個重要的考慮因素是,如何確保你擁有提供上下文的資料集。這就像你有了一個新的智能層,但這個智能層的好壞取決於你給它的上下文。人們甚至將其描述為“上下文工程”,但這就是公司做的事情,對吧?想想公司是做什麼的,都是關於我們作為不同部門的人員,通過處理檔案和資訊流動而擁有的隱性知識。所以問題是,如何讓這個AI也擁有那個上下文?這些是必須滲透到整個組織中去利用的一些新事物。

事實上,這就是為什麼我認為你會看到那個挑戰:為什麼我沒有立即看到生產率的提升?因為你必須做艱苦的工作。事實上,這就是為什麼它不會在某個時點突然爆發。公司之間會有差異,行業之間可能有差異,但這根本上將取決於組織的領導力意志。

勞倫斯·芬克:你看到應用是跨越大型、中型和小型公司在使用,還是目前主要仍是大公司的領域?

薩蒂亞·納德拉:我認為你看到的情況是,如果你是從零開始,更容易採用這些工具,因為你是在知道這些工具存在的情況下建構你的組織。

勞倫斯·芬克:這像是一種“啞鈴現象”,剛起步的小公司可以更好的使用新平台。

薩蒂亞·納德拉:是的。事實上,我認為即使對於大型組織,也存在根本性的挑戰。

除非你的變化速度跟得上可能的發展步伐,否則你將被某個能利用這些工具迅速達到規模的小公司超越。但是,我認為大型組織有固有的優勢:你有人際關係、有資料、有專業知識。但關鍵是,如果你不通過一種新的生產函數來轉化這些優勢,那麼你實際上就會停滯不前。因此,大型組織的變革管理挑戰將會更大。

對於小型組織來說,如何克服規模問題,也是一種很有難度的結構性挑戰。所以,這以一種有趣的方式呈現出兩面性。這將是一個競爭異常激烈的世界,無論你是新進入者還是現有企業,都不能把它當作理所當然。

勞倫斯·芬克:那國家之間呢?你是否看到應用使用方式上的巨大差異?AI仍然是發達國家的專屬領域,還是正在迅速成為所有國家的領域?

薩蒂亞·納德拉:我有兩件事要說。當我周遊世界時,無論是專業知識、軟體開發人員、初創公司還是大型組織的水平,差異並不大,這很有趣。在雅加達、伊斯坦布林和墨西哥城,與在西雅圖或舊金山並沒有太大不同。我想這是我們的世界第一次出現這種情況,僅僅是因為獲取正在發生的事情的管道是存在的。

也就是說,從規模上看,對使用這項技術的承諾、風險資本的存在、大公司的強力推動,成就了這一現實。比如,在美國,如果我們比較一下,就拿金融業來說,金融業對雲的採用與今天對AI的採用相比,速度完全不同,在AI方面要快得多,而云因為各種原因相對較慢。

勞倫斯·芬克:還有監管問題,在監管機構允許下一步之前,把資料移出內部網路是個大問題。

薩蒂亞·納德拉:所以我想說,我認為無論在那裡,你知道,在西方,特別是在美國,顯然有一種真正的、我認為是更多的圍繞使用它的活力,但它也比我所見過的任何技術都更均勻地在世界各地傳播。

勞倫斯·芬克:你提到了電力、電網。如果電力價格高,需求成本高昂,這會不會成為影響AI可及性的決定性因素之一?

薩蒂亞·納德拉:百分之百,如果你看看每美元每瓦特產生的算力,就能預測事情會如何發生了。從某種意義上說,我認為任何地方的GDP增長都將與之直接相關。根據我的整個論點:你擁有一種新的商品,就是算力。而每個經濟體和經濟體中每家公司的任務,就是將這些算力轉化為經濟增長。那麼,如果你擁有更便宜的商品,那就會更好。這就是為什麼“每美元每瓦特產生的算力”如此重要。

順便說一下,這包含許多要素,不僅僅是生產側,這就是為什麼我認為擁有電網也很重要。如果你考慮總體擁有成本,那麼一切因素都要被計算進去,包括你如何成為廉價的能源生產者?你能建造資料中心嗎?矽和電力系統的成本曲線是怎樣的?還有,看看算力的定價,算力定價基本上每三個月下降一半,這就是為什麼我認為人們可以真正規劃如何利用算力創造盈餘,因為你知道你擁有一種價格只會單調快速下降的商品。

勞倫斯·芬克:我們現在身處歐洲,這裡有一種真實的擔憂,因為歐洲沒有自己的電力,大部分電力需要進口。你對此有什麼資訊要傳遞給歐洲嗎?

薩蒂亞·納德拉:我認為時期有兩方面。一是,我們現在在瑞士,我看到製藥業或金融業,他們在這個國家和歐洲做著重要的工作,但他們也是國際品牌,有國際業務。所以,每當我想到歐洲時,有一點是歐洲人生產的產品和服務實際上銷往世界各地。因此,歐洲的競爭力是關於其產出在全球的競爭力,而不僅僅是在歐洲內部。

我覺得有時在歐洲,很多對話只侷限於歐洲本身。但歐洲經濟的繁榮是因為他們能夠生產世界需要的東西。你知道,在過去200年、300年裡,西方的奇蹟根本上源於歐洲發生的事情。這是我想說的第一點。我還想強調,這裡的人力資本非常出色,是世界級的。

但要繼續做到這一點,你必須繼續投資於生產,擁有能源和算力,正如我所說,我們和其他公司正在這裡投資建設資料中心。所以問題是,接下來從這裡產出的會是什麼?每當我去美國的珠寶店或牙醫診所,我總是想到德國的“隱形冠軍”,我被德國的“隱形冠軍”產品包圍著,這代表了一個國家的工程實力。現在的問題是,每個人都在談論主權和資料這個、資料那個,但歐洲實際上更應該關心的是他們的工業公司、金融服務公司能否獲取來自美國及世界其他地區的資料,而不是僅僅認為通過保護歐洲就能保持競爭力。歐洲只有在產自歐洲的產品具有全球競爭力時才能保持競爭力。

所以我認為,這需要改變。我知道歐洲在隱私方面領先,這很棒。歐洲在AI安全和許多其他方面也領先,這是也一個很好的特點。但你還必須通過本地建設和全球思維來補充它。這片大陸將為世界其他地區做出什麼貢獻,正如它在歷史上一直是一位領導者那樣。

勞倫斯·芬克:那麼,你認為圍繞資料主權的整個概念,是否被誤解了?

薩蒂亞·納德拉:我認為,當人們談論主權時,首先,它顯然非常重要。尤其是在像這樣的一周裡,它更重要。但話雖如此,你必須思考主權意味著什麼。例如,在AI領域,一個很少被討論但我覺得在今年將被最多討論的話題,將是公司的主權。想像一下,如果你的公司無法將公司的隱性知識嵌入到一組你控制的模型權重中。從定義上講,你就沒有主權。這意味著你正在將企業價值洩露給某個地方的某個模型公司。

現在幾乎沒人談論這個,對吧?每個人都在談論其他所有事情,那些外圍的事情,但這才是最重要的事情。其他問題都是技術上更容易解決的問題,但有一個問題只能通過你對隱性知識有更多的主權和控制模型來解決。這不是單向的企業價值轉移。所以對我來說,我認為主權需要對它是什麼進行真正的思考,你知道,掌控命運意味著你生產獨特產品的能力得以保留。

就像大衛·李嘉圖所言,國家有比較優勢。而公司也有需要保持的競爭優勢,即使在AI時代也是如此。這才會給你真正的主權。

勞倫斯·芬克:最後一個問題,在五年或十年內,我們會有一個所有人都將使用的主導模型嗎?微軟為此在做何準備?我們會為企業使用一個模型,為其他場景使用另一個模型嗎?

薩蒂亞·納德拉:你知道,過去的三年、四年裡,我們一直在做這件事。而現實情況是,這是一個多模型的世界。我的意思是,我們未來仍將會有多個模型。而訣竅在於你如何利用這些模型,事實上,你可以通過提煉它們來建構你自己的模型。

更重要的是,你可以進行所謂的“硬性編排”或“駕馭工程”。因此,任何應用程式或公司的智慧財產權在於,你如何利用所有這些模型,結合上下文工程或你的資料來進行產出。而這就是藝術所在。

所以,未來的場景和問題是,我能否引入所有模型,無論是閉源的、開放原始碼的,還是我自己建構的模型,對它們進行編排,並輸入我的資料,從而改變我關心的某個結果的軌跡。這就是整個圖景。

我首先生產某種產品或服務,我需要在銷售方面做得更好,或者在研發方面做得更好,或者在財務方面做得更好,等等。然後你設定目標結果,考慮能否利用所有模型,對它們進行編排,並輸入自己的上下文。

然後,作為結果,推理軌跡能真正導向一些我作為智慧財產權控制的、屬於我的能力和模型。只要公司能回答這個問題,它們就會取得進步。

勞倫斯·芬克:女士們先生們,讓我們感謝薩蒂亞,謝謝。希望這是在世界經濟論壇上許多偉大對話和討論的開始。謝謝大家。 (鈦媒體AGI)