#決策邏輯
深度|Google為什麼總能做對決策?
將高度理性的資料驅動,與極度尊重個體創造力相結合。多年前,Gemini大模型的發佈讓全球科技圈重新審視Google的AI佈局。當外界還在討論其與GPT的參數比拚時,很少有人注意到一個細節:這款跨模態大模型的核心技術,源自Google2017年開放原始碼的Transformer架構,以及收購併長期投入的DeepMind實驗室——兩項看似不相關的佈局,在近十年後形成了精準共振。更早之前,當亞馬遜AWS已經在雲端運算市場佔據半壁江山時,Google雲(GCP)仍一度被視為“追隨者”,但如今憑藉AI原生雲的定位,成為全球第三大雲服務商,增速持續領跑行業。從搜尋引擎的絕對壟斷,到Android系統佔據全球移動裝置七成以上份額,從雲端運算的後發先至,到AI時代的技術引領,Google成立二十多年來,幾乎在每一個關鍵技術轉折點都踩准了節奏。與之形成鮮明對比的是,微軟有比爾·蓋茲、薩提亞·納德拉,亞馬遜有傑夫·貝佐斯,蘋果有史蒂夫·賈伯斯、蒂姆·庫克,這些CEO的個人光環幾乎等同於公司符號。而Google的歷任CEO,無論是埃瑞克·施密特、拉里·佩奇,還是如今的桑達爾·皮查伊,都顯得低調內斂,甚至在大眾認知中“存在感不強”。更值得玩味的是,科技行業對“管理文化”的討論,多集中在微軟的刷新、亞馬遜的Day1、蘋果的極致產品主義,Google的決策邏輯卻始終像一個黑箱。它沒有喊出振聾發聵的管理口號,也沒有形成可複製的“爆款方法論”,卻總能在複雜的市場博弈中做出正確選擇——以至於時至今日,在浪潮迭起的時代變化裡,這家公司從未落跑,市值更是超越蘋果,成為全球第二極。這背後,究竟隱藏著怎樣的運作模式?驅動Google持續做對決策的“發動機”,又是什麼?01 決策去中心化:讓聽到炮火的人掌握話語權在試圖理解Google如何做出決策時,一個常見的認知誤區是,尋找單一的、閃耀的個人權威或一句朗朗上口的管理箴言。但Google的決策體系,從根源上摒棄了“CEO集權”的模式。拉里·佩奇和謝爾蓋·布林在創立之初就意識到,技術創新的不確定性決定了最正確的決策往往不是來自頂層設計,而是源於一線團隊對技術趨勢和使用者需求的敏銳感知。這種認知,最終演變成Google“去中心化決策網路”的核心邏輯。在Google內部,幾乎不存在一言堂式的戰略制定流程。任何一個團隊,只要能拿出足夠有說服力的技術論證和市場分析,都可以向公司申請資源支援,甚至挑戰既定的戰略方向。2013年,當Google雲還處於起步階段時,內部有三個團隊同時在探索不同的雲端運算技術路線:一個聚焦基礎架構即服務(IaaS),一個主攻平台即服務(PaaS),還有一個嘗試將Google的核心技術(如巨量資料處理工具BigQuery)封裝成行業解決方案。不過這種“內部賽馬”,並不像當下許多網際網路公司的無序競爭。但與此同時,任何重大產品決策,從介面設計到市場進入,都必須通過嚴格的A/B測試和資料分析來驗證。即便是備受推崇的“20%自由時間”制度,其存續與調整也依賴於內部對創新產出率的持續評估。內部有一條廣為遵循的原則:“不要聽信‘河馬’,即最高薪人士的意見。” 在會議中,無論職位高低,最有說服力的不是頭銜,而是支援觀點的資料質量。一位初級工程師可以用詳實的A/B測試結果,質疑甚至推翻副總裁的產品設想。這創造了一種近乎“智力平等”的辯論場域,決策過程從權力博弈轉向真理探求。最終,Google沒有簡單地選擇某一條路線,而是將三個團隊的優勢整合,形成了“基礎架構+平台+行業解決方案”的三位一體模式。也正因此,Google雲避開了AWS早期“重IaaS輕生態”的短板,也沒有重蹈微軟Azure初期“定位模糊”的覆轍,在AI時代憑藉“雲+AI”的協同優勢實現彎道超車。在Google,“做決策”並不是高管的核心職責,決策往往在技術精英層的深度辯論中產生,CEO的角色更接近於辯論主持人、資源協調者和最終執行責任的承擔者,很少直接干預具體業務的決策,工作重心是協調跨部門資源、保障內部溝通順暢、維護公司的長期價值導向。這正是Google最獨特也最易被誤解的一點:它的決策權威,日益從個人身上轉移到系統之中。這解釋了為何其CEO相對低調,卻不妨礙組織高效運轉。佩奇和布林最持久的遺產或許並非某個具體產品。OKR才是核心處理程序,它強制要求目標公開透明、野心勃勃且可衡量。全公司上下,從CEO到基層團隊,每個人的OKR都相互可見。這一機制產生了兩個革命性效果:第一,它讓組織的力量在縱向和橫向上自動對齊,減少了因資訊不透明導致的重複勞動或方向偏離;第二,它使績效評估基於對公共目標的貢獻度,而非上級的主觀印象,進一步削弱了辦公室政治。“賦能而非管控”,讓Google內部形成了一種“自下而上”的決策動力。每個團隊都有足夠的自由度去探索,那麼公司要做的,是通過完善的資源調配機制,讓有潛力的方向獲得足夠支援。因此,Google的CEO無需像賈伯斯那樣扮演產品先知,也無需像貝索斯那樣事無鉅細地掌控,更無需像馬斯克那樣以個人形象繫結公司品牌。02 長期主義:不做“緊急但不重要”的決策Google的決策邏輯押注長期價值,但這種長期主義並不是簡單的“延遲滿足”。2006年,Google以16.5億美元收購YouTube時,這家視訊網站還處於虧損狀態,外界普遍質疑Google花天價買了一個燒錢機器。但佩奇和布林看到的,是視訊內容即將成為網際網路主流形態的趨勢。在收購後的十年裡,Google沒有強迫YouTube快速盈利,而是持續投入資金最佳化演算法推薦、搭建內容生態、完善創作者激勵機制。直到2019年,YouTube才成為Google營收的第二大支柱,如今更是佔據全球視訊串流媒體市場的半壁江山。反觀同期的競爭對手,雅虎視訊、微軟MSN視訊等,因急於追求短期盈利,頻繁調整戰略,最終在競爭中掉隊。除此以外,早年廣告業務爆發時,有團隊提出“根據使用者搜尋記錄精準推送廣告,甚至向第三方出售部分資料”,這個方案能讓短期收入大幅提升,卻被管理層否決。當時負責廣告業務的負責人拿出一份使用者隱私調研指出,大部分使用者願意接受適量廣告,但他們反感資料被濫用。團隊的邏輯很清晰:廣告收入的根基是使用者信任,破壞信任換短期增長,得不償失。如今,Google廣告業務依然是全球最賺錢的廣告模式之一,核心就在於使用者的信任積累。我們常常稱讚一家公司“反應迅速”、“抓住風口”,但Google的許多重要決策,在外界看來恰恰是“緩慢”甚至“遲鈍”的。雲端運算是另一個典型的例子。當亞馬遜AWS已經攻城略地、微軟Azure開始全力追趕時,Google雲似乎還在不緊不慢地搭建自己的技術架構。市場焦急,分析師質疑,客戶在流失。按照大多數公司的決策邏輯,這時應該立刻推出一套模仿對手的簡化產品,先搶佔市場再說。緊急嗎?非常緊急。重要嗎?似乎也重要。但Google的選擇是,繼續挖它的運河。因為它知道,如果僅僅複製一個AWS的替代品,自己永遠只能是追趕者。它要的,是修建一條完全不同的河道:一個真正為雲原生時代、為機器學習和巨量資料而設計的雲。這個決策意味著要忍受好幾年的市場質疑和份額落後,要把巨大的資源投入到像Kubernetes這樣的開源基礎設施中(當時看來這簡直是在為對手做嫁衣),要說服開發者接受一套全新的思維和工作方式。這個過程一點也不激動人心。但當數位化處理程序深入到下一個階段,企業不再滿足於簡單地把伺服器搬到網上,而是需要在雲上建構智能、靈活的應用時,人們才發現,Google挖的那條運河,恰好通往未來最需要水的地方。需要注意的是,在Google,有些團隊的任務就是應對“今天”和“本周”的問題,比如營運和最佳化現有產品。但另一些團隊,他們的OKR(目標與關鍵成果)時間跨度是三年、五年,甚至更長。他們的成功標準不是下個季度的營收,而是能否在某個根本性的技術或科學問題上取得突破。公司允許,甚至鼓勵一部分資源長期游離在“緊急”的業務壓力之外。這就好比一片森林,既有生長迅速、吸收養分的灌木層,也有生長緩慢、但最終決定森林高度的喬木層。決策時,你不能因為灌木長得快,就把所有陽光都給它。那麼,是誰在守護這種長期視角?在一個沒有強勢、獨裁型CEO的公司裡,這個責任是分散的。技術骨幹們承擔了一部分。在Google,高等級工程師擁有巨大的影響力。他們的晉陞和評價,很大程度上取決於對技術方向的判斷和貢獻。系統也承擔了一部分。OKR體系要求目標必須具有“挑戰性”,這天然鼓勵了超越當前能力的思考。當然,領導者依然是關鍵的守門人。長期主義的決策,結果不會立竿見影。但當它終於因為佈局深遠而迎來收穫期時,人們往往稱之為“幸運”或“遠見”。03 湧現的智慧:建構創新生態而非規劃創新路徑在《重新定義團隊》這本書裡,Google所認為的突破性創新,往往無法被“計畫”或“指揮”。規劃創新,聽起來很合理。設定明確的目標,分配資源,制定時間表,然後執行。但創新的本質,尤其是突破性的創新,常常是“規劃”不出來的。就像你無法在1920年規劃出網際網路,在1990年規劃出智慧型手機的具體模樣一樣。突破往往誕生於意料之外。Google很早就意識到了這一點。早期著名的“20%時間”政策,本質就是一種制度化的湧現機制,通過明確的制度授權,為自下而上的創意提供了資源、時間和合法性。Gmail、GoogleNews等里程碑產品皆源於此。儘管這一政策的形式隨著公司規模擴大而演變,但其核心,通過給予自主權來激發創造力,已融入Google的基因。這個制度能運轉,靠的不僅是規則本身,依然是一整套與之匹配的決策邏輯。首先,Google的決策尊重“自下而上”的發現。 在大多數層級森嚴的組織裡,資訊的流動和想法的認可,高度依賴匯報線。在這個過程中,想法很可能因為某個中間人而被過濾掉。Google通過技術論壇、內部程式碼開源、扁平化的項目啟動流程,努力讓好的想法能自己“浮”上來。其次,它鼓勵看似“不務正業”的跨界碰撞。管理層不會只根據“這個主題和我們的核心業務有多相關”來決定是否支援。他們認為創新常常發生在學科的邊緣和交叉地帶。保持知識的廣泛流動和跨界交流,就是在為不可預測的創新增加機率。在一個規劃驅動的文化裡,失敗是必須避免的污點,但在一個生態思維的文化裡,“嘗試-失敗-學習”是系統進化的基本方式。Google關停過無數產品,從Google+到Google眼鏡的消費者版本。這些決定當然不是輕易做出的,但公司不會因為一個項目的失敗,而全盤否定背後的團隊或個人,更不會因此就關閉所有高風險的探索通道。內部常常流傳著一些項目被砍掉的故事。有些項目可能有不錯的使用者資料,有忠實的團隊,甚至已經開始產生收入。但一旦評估認為,它只是對現有模式的微小改進,或者偏離了最核心的技術方向,就可能被終止。資源,尤其是最頂尖的人才會被重新調配到那些更具基礎性、更可能定義未來的工作上。這個決策過程通常是痛苦的。但它傳遞了一個訊號:在這裡,衡量一個決策的價值,不僅看它能否立刻解決一個麻煩,更要看它能否在五年後依然重要。這形成了一種文化,人們提出新想法時,會更自然地去思考它的長期潛力。這種思維在技術戰略上體現得尤為明顯。面對人工智慧的浪潮,Google早在十多年前就系統性佈局。收購DeepMind,開創性地發佈Transformer架構論文,開發TensorFlow開源框架……一系列決策看似分散,實則遵循著同一邏輯:在最底層、最肥沃的土壤中播種,然後耐心培育整個生態。所以當ChatGPT引發生成式AI熱潮時,外界驚覺Google早已在演算法、算力、資料、人才和基礎設施各層面構築了深厚壁壘。它的決策已超越追逐某個產品熱點,轉向投資一個必然到來的技術時代的全部基礎要素。這種模式要求決策者具備非凡的耐心和長遠的戰略定力。許多投入在短期內看不到回報,甚至會被外界詬病為“方向散亂”或“反應遲緩”。但Google的決策系統容忍這種模糊性,因為在正確的生態裡,湧現出的成果將遠超任何精心設計的路線圖。 (新眸)
Manus,危?!
本文彙編整理自張小珺對話季逸超。他是中國第一代軟體出海創業者,高中靠一款瀏覽器賺得 30 多萬美金;他深耕 NLP 十餘年,親歷從傳統 NLP 到大模型的技術巨變;如今帶著通用 AI 產品 Manus 橫掃海外,ARR 超 1 億美金。他就是 Manus(蝴蝶效應科技)的聯合創始人兼首席科學家季逸超(Pick)。最近,Manus被數十億美元收購的風波,引起不少人的討論。但我們更應該關注的,是這家公司的商業思考。在張小珺這場 3 小時的深度訪談中,季逸超分享了自己的創業故事、產品決策邏輯,以及對 AI 行業未來的底層思考。沒有晦澀術語,全是實戰乾貨,值得每一位創業者、從業者細讀。以下,是季逸超的自述精華版。一、三次創業 踩中時代紅利,也扛過技術顛覆1.第一次創業:移動網際網路蠻荒期的“意外驚喜”2009年,蘋果APP Store出現的第二年,我還在讀高中。那時候剛好趕上桌面網際網路向移動網際網路轉型,不管是國內的BAT,還是海外的大廠,大家都站在同一起跑線,沒有成熟的玩法,屬於移動網際網路的蠻荒期,這給了我這樣的個人開發者絕佳機會。我做了一款第三方iOS瀏覽器,叫猛獁瀏覽器(Mavericks Web Browser),商業模式特別樸素,賣軟體拷貝,每賣一份賺一份固定收入。沒想到這個簡單的模式,讓我在高二、高三期間賺了30多萬美金,也算成了中國早期軟體出海的創業者。那時候國內沒有成熟的支付管道,只能支援國際信用卡,國內使用者基本沒法付費。我就想了個辦法,破解自己的軟體,讓大家免費用,也算賺個吆喝,沒想到還吸引了資本關注,真格基金的徐老師當時就問我想不想創業。後來移動網際網路的商業模式變了,大家都開始“免費獲客 + 增值服務”,加上 iOS 系統不斷更新,我的瀏覽器慢慢不相容了,最後自然下架。這段經歷讓我早早摸清了產品變現和使用者營運的邏輯,也讓我深刻感受到 時代機遇對創業者的重要性。2.第二次創業:NLP深耕與大模型的“降維打擊”從瀏覽器業務裡,我發現了一個關鍵需求:當時行動網路速度慢,如果能預測使用者的下一次點選,提前載入內容,體驗會好很多。這個需求讓我一頭紮進了自然語言處理(NLP)領域,這一扎就是好幾年。2013年,Google推出了Word2Vec論文,能把自然語言文字高效轉化為稠密向量,這給了我極大啟發。我組建團隊做語義搜尋和知識圖譜,想打造“下一代 Google”—— 傳統搜尋引擎只給連結,我想直接給答案,通過自動化技術建構知識圖譜,解決使用者的核心需求。我們團隊從零開始訓練模型,從依存句法分析到Word2Vec向量化,再到 LSTM+Attention,最後跟進Transformer和BERT,整整熬了4年,做出了產品 Maggie。它能自動提取三元組、支援多語言,在最高置信度下的精準度能達到89%,比Google當時的產品還高,甚至能支援阿拉伯語這種反向書寫的語言。但2019年,GPT-3的出現給了我們致命一擊。我隨便寫個 Prompt(提示詞),它就能和我們訓了幾年的端到端模型五五開,而且它是通解,能搞定 NLP(自然語言處理)領域的各種任務,而我們只是垂直領域的解決方案。那一刻我意識到,垂直技術在大模型面前沒有優勢,最後決定賣掉公司。這段經歷讓我體會到垂直整合的痛苦:每天醒來都感覺海水在上漲,不知道什麼時候會淹到鼻子,模型迭代、資料標註、基礎設施搭建,每一步都要自己扛,那種壓力至今難忘。3.第三次創業:放棄AI瀏覽器,押注通用agent賣掉公司後,我在一家獨角獸公司做了一年半,主要工作是打榜贏算力資源,那段時間也讓我冷靜觀察了 AI 行業的變化。2023 年底,我被肖弘(Manus CEO)說服加入團隊,核心原因是他說的一句話:“Pick,你想不想在一個產品裡,把瀏覽器、搜尋引擎、語言模型重新做一遍?” 這句話一下子戳中了我。初期,我們基於Chrome外掛Monica的使用者資料,想做一款AI原生瀏覽器。Monica 當時已有1200萬美金 ARR,是正向現金流產品,但我們很快發現了問題:外掛的使用者滲透天花板太低 ,Chrome 有20億日活,而頭部外掛的活躍使用者也就5000萬左右,不到 1% 的滲透率,再怎麼發力也難有大突破。更關鍵的是,瀏覽器的遷移成本極高。人類歷史上只有兩次瀏覽器變革:從網景到IE,從IE到 Chrome,要麼靠管道分發,要麼靠技術漏洞,創業公司想顛覆太難了。而且當我們內部把瀏覽器產品打磨得差不多時,我突然覺得它“不是特別酷”——按我現在的話說,如果一個產品做完,你自己都覺得不酷,那沒人會覺得酷。其實做完一款產品,人難免會有慣性偏袒,那怕我們都是經歷過幾次創業的“中登”,也會下意識想說服自己產品沒問題。但隨著更多問題暴露出來,我們才慢慢趨向冷靜判斷。直到看到美國創業公司 The Browser Company 放棄瀏覽器產品 Ark,創始人說“連親戚朋友都不願意從Chrome換成Ark”,我才徹底下定決心放棄這個方向。其實那段時間特別寶貴,大家在自然而然形成共識的過程中放下了瀏覽器,處於一種幾乎無所事事的狀態。而當一群不太笨的人無所事事的時候,就會產生很多很好的想法。當時我們還在正常營運Monica,同時也會做一些別的實驗,那段時間已經有不少AI產品受到歡迎,尤其是coding領域,像Cursor、Windsurf,還有後來的Devin,都積累了很多使用者。我們作為工程師,自然會去體驗這些工具,可讓我們意外的是,公司裡很多非工程師居然也在用Cursor,要知道,Cursor的產品形態還是IDE(整合式開發環境),本來是寫給程式碼人才用的東西。我們發現,營運同事在用它寫部落格,資料分析同事用它做資料分析和可視化。於是我們特意站在他們身後觀察,發現了很有意思的一幕:Cursor左邊是程式碼區,右邊是和AI聊天的窗口,這些不會寫程式碼的同事根本不看左邊的程式碼,只是不斷跟AI交流,讓AI幫自己完成任務。原來AI是通過程式設計的方式,以程式碼為媒介,去幫他們完成這些非編碼任務。這讓我突然意識到:程式設計不是垂直技能,而是通用能力,真正的機會是把這種通用能力包裝起來,讓普通人也能用。於是我們把瀏覽器的技術積累搬到雲端,打造了通用agent產品 Manus:每一個會話背後都有一個獨立的虛擬機器沙盒,能幫使用者做網頁、做 PPT、批次處理檔案、深度研究,還能聯動 Notion、Slack 等工具,非同步處理長任務,不用使用者自己寫程式碼或複雜操作。2024年3月Manus 發佈,現在 ARR(年度經常性收入)已經超過1億美金。我們沒有對標任何產品,完全是使用者用出來的,大家喜歡用它做幻燈片、網頁和批次檔案處理,我們再針對性最佳化,這種由使用者塑造的產品,生命力才強。二、Manus 的產品邏輯不做工具,做 “人的延伸”1.為什麼堅定做通用agent,而非垂直工具?我之所以堅持做通用 agent,核心有三個判斷:技術層面:通用基座模型 + 虛擬機器(圖靈完備)的底層供給是通用的,垂直領域只是在上面加約束,反而會限制產品潛力;產品層面:使用者的需求是多樣的,通用產品能讓使用者按自己的想像力使用,我們團隊再通過觀察使用者行為捕獲頭部場景,既保留長尾能力,又能形成網路效應;商業層面:垂直工具的使用頻次太低,比如旅行規劃一年就幾次,很難讓使用者記住,而通用產品能覆蓋使用者多場景需求,提升使用頻次和使用者粘性。如果你做的是個垂直agent,你可能還是在做一種新的工具。但如果你在做一個通用agent,你其實在做一個人。我們現在經常跟使用者或其他人交流,他們常說 Manus 很像人,但我們從來不以替換人的思路來想這事 ,如果你給別人傳遞“要替換人”的心智,所有人都會從風險控制的角度考量,只要一個環節不通,整個產品就被否定。其實我們該抱著提升人(enhance people)的思路,讓高效的僱員或自驅的人,用了這個工具後產能再上一個台階,這才是更良性且現實的做法。比如你想做一個有內容的網頁,它能先做深度研究,再基於研究結果做網頁,最後還能分析網頁流量、做 PPT 發給投資人。2.初期用邀請碼,不是行銷是“無奈之舉”Manus發佈初期採用邀請碼機制,被很多人質疑“過度行銷”,其實這是我們的無奈之舉。當時我們跟所有雲廠商和模型廠商溝通後發現,世界上能立即到位的算力比想像中少太多。Agent 的算力消耗模式和 Chatbot 完全不同,輸入和輸出比例能達到100:1甚至1000:1,要是放開用,產品肯定會崩。直到一個月後,雲廠商和模型廠商適應了agent的工作負載,我們才取消邀請碼。可以說,我們是為行業趟了一條路,後來再用邀請碼的公司,我覺得就沒必要了,算力已經準備好了,沒必要再搞這種形式。3.商業化:不追求DAU,只服務高價值使用者Manus 的定價邏輯很簡單,參考 ChatGPT的20 美金/月,我們定了40美金 / 月的默認訂閱價,現在逐漸簡化為“免費方案+自由訂閱金額”。我們不追求 DAU(日活躍使用者數),而是關注“高價值使用者的高價值任務”。有的使用者一個月能給我們付幾千美金,因為他有大量高價值任務要跑,這比單純的使用者數有意義得多。目前Manus的使用者主要是三類人:網際網路公司非程式設計師的白領、自由職業者、金融和諮詢行業從業者。他們有強自驅力,任務價值高,對質量的敏感度也高 ,我們做過雙盲測試,悄悄換個模型,使用者滿意度就會明顯下降,所以我們必須保證每一次輸出的質量。三、AI行業的創業、競爭與決策邏輯1.模型與應用的終局:不再涇渭分明未來不會再分模型公司和應用公司。美國現在已經是這個趨勢,OpenAI既做模型也做產品,Google雙向都強,Anthropic 靠Cloud Code的成功也開始重視產品。對於應用公司來說,優勢在於“不用買模型彩票”。模型公司的創新是自下而上的,靠技術突破驅動產品;而應用公司能吸收所有外部創新,快速迭代,而且使用者的使用軌跡和反饋留在應用層,能形成獨特的資料飛輪,這是模型公司拿不到的優勢。2.決策機制:分階段混合模式,兼顧效率與多元創業公司在不同階段、解決不同事情時,需要不同的決策模式。雖然我們是連續創業者,但其實也都不成熟,最近在逐漸走向更理智的方式。我們總結了一套“GPA”決策框架,還會結合集權式和民主式兩種模式:G(Goal,定目標):集權式決策由CEO肖弘作為“仁慈的終身獨裁者(BDFL)”拍板,直接把團隊核心目標定死,避免目標分散。P(Priority,定優先順序):專制 + 民主結合先由核心決策者(比如CEO或對應領域負責人)牽頭,同時充分吸納團隊成員的專業意見,畢竟涉及不同領域的專業能力,多元輸入能讓優先順序排序更合理。A(Alternative,提方案):充分民主鼓勵團隊成員自由提供各類可選方案,這個階段方案數量比質量更重要,足夠多的選項才能避免決策侷限,就像訓練模型不能侷限於狹窄的動作空間。其中,肖弘作為CEO,是產品方面的最終決策者。我們都比較相信與其懸而未決,不如趕緊試試。面對新領域時,過往經驗未必有用,過度思考只是基於自己“模型內部的參數化知識”,沒有額外資訊輸入,也沒有檢驗結果,再想太多不如先行動,拿到反饋再調整,避免無意義的內耗。3.競爭:不是零和博弈,而是生態聯動很多人問我,面對 OpenAI、Google 等大廠的競爭,我會不會焦慮?其實我並不焦慮。我們能用上市面上所有最好的模型,而大廠有自己的專長:Anthropic 的 coding 能力、Google 的多模態能力、OpenAI 的推理能力。我們的優勢是產品迭代快,而且服務的是對質量要求極高的使用者,這部分使用者不會因為品牌而妥協,他們要的是當下最好的體驗。AI行業的競爭不是零和博弈。Manus和 Notion、Microsoft、Slack都是聯動關係,我們串接這些工具,產生的價值比單獨競爭大得多。與其做一個比不過別人的垂直功能,不如讓大家一起把生態做好,這才是共贏。4.通用agent的未來:主動創造價值,而非被動響應我認為通用agent的下一個方向是“主動性(proactiveness)”。現在的 AI 還是被動響應使用者需求,未來要能主動完成任務。比如你面試完,Manus能自動看你的Notion記錄,把評價填到招聘系統裡,只讓你確認就行,真正解放使用者的注意力。同時,我也想給模型廠商提幾個建議:讓模型學會 “壓縮意識”,不用無限擴展上下文窗口;結合工具做推理,而不是純“缸中之腦”;支援使用者隨時插嘴,適應非同步互動;提升錯誤恢復能力,遇到問題不放棄、不陷入死循環,這些都是通用agent 落地的關鍵。5.AI創業的本質:不是賭一把,而是先行動對比我的三次創業,現在的AI創業和移動網際網路時代完全不同:移動網際網路的邊際成本低,能低成本試錯;而AI創業更像製造業,有固定成本,算力消耗就是很大一筆開支。所以,對於創業公司來說:第一,不要做垂直整合,除非你有足夠的資源;第二,不要糾結於要不要做,比較健康的做法應該是當你的產品已經初具PMF,且已經到了一個比較穩定的狀態之後,你以一種增加穩定性或降本或突破天花板的思路再去做模型;第三,團隊要身心健康、尊重常識,不要做“有賈伯斯的病,沒有賈伯斯的命”的偏執者。結語你準備好迎接未來了嗎?從高中時的瀏覽器創業者,到如今的通用AI先鋒,季逸超的三次創業始終圍繞技術落地和 使用者價值。他踩過垂直整合的坑,也抓住了 agent 的機遇,用 Manus證明了不做模型也能做出頂尖AI產品。在 AI 行業還在爭論模型至上還是應用為王的今天,季逸超的經歷給出了另一種答案:真正的機會,在於理解技術的邊界、使用者的需求,以及時代的趨勢,然後以理性的姿態,快速行動、持續調整。而對於我們每一個人來說,AI不是要取代人,而是要解放人,就像季逸超說的:“把不喜歡的事交給 AI,剩下的才是真正的自己。” (筆記俠)