#圖靈獎
LeCun哈薩比斯神仙吵架,馬斯克也站隊了
吵起來了。圖靈獎得主和諾貝爾獎得主,為了“智能的本質”——直接激情友好地交流上了。AI三巨頭之一、圖靈獎得主Yann LeCun明確表示:純粹就是胡扯(complete BS)。而諾貝爾獎得主、GoogleDeepMind CEO哈薩比斯也不留情面了,指名道姓回擊:LeCun的說法簡直是大錯特錯。論戰之激烈,關注度之高,已經讓𝕏專門開闢了一個話題類股:馬斯克也跑來吃瓜了——沒有任何多餘的解釋,但這波他站哈薩比斯——“Demis is right”。當然,馬斯克的站隊可能也有別的原因。畢竟他和LeCun素來不是很對付,跟哈薩比斯則亦師亦友——馬斯克還是哈薩比斯DeepMind早期投資人。要科學吃瓜,可能還是要知道他們究竟在激辯什麼?爭論焦點:智能的本質是什麼?事情還要從LeCun幾天前接受的一場採訪說起。他在節目中言辭犀利地指出:根本不存在所謂的“通用智能”,純粹就是胡扯(complete BS)。這個概念毫無意義,因為它實際上是用來指代人類水平的智能,但人類智能其實是高度專業化的。我們在現實世界裡確實幹得不錯,比如認個路、導航blabla;也特別擅長跟人打交道,因為咱們進化了這麼多年就是幹這個的。但在國際象棋方面,我們表現很差。而且還有一堆事兒都搞不定,反倒是有些動物比我們強得多。所以說,我們其實就是“專才”。我們認為自己是“通用”的,但這僅僅是一種錯覺,因為我們能理解的所有問題都侷限於我們能想到的那些。簡單概括就是,LeCun認為人類智能並不“通用”,而是為了適應現實物理世界而專門進化出來的某種專業能力。人類之所以擅長識別物體、躲避危險、與他人合作等,也只是因為這些能力在進化中被環境塑造。然而,這一觀點很快遭到了哈薩比斯的直接回懟。哈薩比斯表示:LeCun的說法簡直是大錯特錯。他這是把“general intelligence”和“universal intelligence”兩個概念搞混了。然後他一一駁斥了LeCun的觀點,其原話如下:大腦是目前宇宙中已知最精妙、最複雜的事物,實際上具有極強的通用性。但是在實際的系統當中,“天下沒有免費的午餐”這個道理是無法迴避的——任何實際且有限的系統,在其所學目標分佈周圍,都必然存在一定程度的專門化。但從圖靈機的理論意義上講,通用性的核心在於,只要給予足夠的時間、記憶體(及資料),就能夠學習任何可計算的內容。而人腦(以及AI基礎模型)正是近似的圖靈機。並且,針對LeCun關於國際象棋棋手的評論,哈薩比斯認為人類能發明國際象棋本身就令人驚嘆,更不用說從科學到波音747等現代文明的一切了。關於LeCun對棋手的評論——人類最初竟能發明國際象棋(乃至從科學到波音747的整個現代文明!)本就令人驚嘆,更不用說還能出現像馬格努斯·卡爾森那樣棋藝卓絕的人物。他或許並非嚴格意義上的最優解(畢竟記憶有限、決策時間也受限),但考慮到我們的大腦本是為狩獵採集而進化,他和我們如今所能成就的一切,已足以展現人腦的驚人潛力。顯而易見,哈薩比斯對“智能”的理解從不侷限於電腦科學,而是深度融合了神經科學。一直以來,他認為真正衡量智能的兩個關鍵標準分別是通用性(Generality)和學習能力(Learning),為此他經常拿1997年“深藍”戰勝卡斯帕羅夫舉例——雖然“深藍”在國際象棋上很強,但還是連簡單的井字遊戲都不會玩,所以足以見得這種程序的死板之處。而關於這場對決,哈薩比斯還透露,最吸引他的不是“深藍”這個系統,而是卡斯帕羅夫的大腦(畢竟他能作為人類代表與AI進行比賽)。沒錯,又是“大腦”這個關鍵詞。哈薩比斯一直堅信,人類大腦是宇宙中已知的唯一關於“通用智能可行性”的存在性證明。當大腦和AI結合之後,所謂的“通用人工智慧”其實就是能夠展現出人類所擁有的所有認知能力的系統。至於具體如何實現AGI,哈薩比斯多年來也形成了一套自己的方法論,總結起來就是——預測建構理解,規劃擴展可能,強化學習實現自主進化。第一步:以預測為基石。在他看來,智能的本質在於預測——無論是預測下一個單詞還是預測蛋白質的折疊形狀。這是所有認知活動的基礎形式,也是AI理解世界的內在驅動力。第二步:引入搜尋與規劃AI系統首先要建立一個世界模型,然後在此基礎上進行搜尋或規劃,以在巨大的組合搜尋空間中找到最優解。第三步:最終通向深度強化學習這是哈薩比斯最推崇的終局路徑,也是對大腦運作方式的模擬——深度學習負責模式匹配和尋找結構,強化學習負責通過試錯進行規劃和達成目標。這在生物學上對應著大腦的神經通路和多巴胺獎勵系統。至此,我們看到兩位大佬關於智能本質的爭論,表面上看起來似乎確實截然不同。一個認為“通用性智能”是胡扯,本質上智能是自然世界高度專業化的產物;另一個認為通用性智能不僅存在,而且仍有巨大潛力有待挖掘。但事實,真的如此嗎?上述爭論過後,LeCun又再次出來回應了,而且這次直接點名了分歧核心——用詞。我認為分歧主要在於用詞。我反對用“通用(general)”來指代“人類水平”,因為人類是高度專門化的。不過,雖然承認用詞有分歧,但他還是繼續重申了“人類智能並不通用”的觀點。其論證如下:第一,理論完備≠實際通用。你也許不同意人類思維是專門化的,但事實確實如此。這不僅是理論能力的問題,更是實踐效率的問題。顯然,一個經過良好訓練的人腦,如果配合無限量的紙和筆,是圖靈完備的。但對於絕大多數計算問題來說,這種方式效率極低,因此在資源受限的情況下(比如下棋),它遠非最優方案。就是說,哈薩比斯所構想的“理想的圖靈機”對解決現實問題幾乎沒有意義,因為真正的智能必須在有限資源下高效運作——而人腦的進化恰恰是資源約束下高度最佳化的結果。第二,兩個典型例子可以反映大腦的“非通用性”。在理論上,一個兩層神經網路可以以任意精度逼近任何函數;但在實踐中,幾乎所有有意義的函數都需要隱藏層中包含數量巨大、難以實現的神經元。正因如此,我們才使用多層網路——這正是深度學習存在的根本原因。再換一個角度來看:視神經大約有100萬根神經纖維。為了簡化討論,我們假設訊號是二進制的,那麼一次視覺任務就可以被視為一個從100萬位元對應到1位元的布林函數。在所有可能的此類函數中,有多少是人腦可以實現的?答案是:一個無窮小的比例。通過這兩個例子,LeCun再次重申了自己的觀點:所以我們不僅談不上“通用”,而且是極其高度專業化的。可能的函數空間極其廣闊。我們之所以沒有意識到這一點,是因為其中絕大多數函數對我們來說複雜到難以想像,看起來幾乎完全是隨機的。而且他還提到了愛因斯坦曾經說過的一句話——世界上最不可思議的事情,是世界竟然是可以被理解的。在所有可能的、隨機的世界組織方式中,我們竟然能夠理解其中極小的一部分,這本身就令人驚嘆。而我們無法理解的那一部分,我們稱之為“熵”。從這個意義上說,宇宙中絕大多數的資訊都是熵——是我們孱弱的認知能力無法理解、因而只能選擇忽略的內容。總之,事情battle到最後,網友們也是紛紛回過神來了——這場爭論最大的bug可能就在用詞上了。而拋開用詞不談,本質上來看,兩個人其實更像是在談論不同的問題:一個核心在強調“我們是什麼”,另一個則在強調“我們能成為什麼” 。而這,也恰恰指向了同一個更深層、也更現實的議題——接下來,我們究竟該以怎樣的方式實現AGI?答案:世界模型不管是在LeCun還是哈薩比斯這裡,答案其實都已經很清晰了——世界模型。眾所周知,即將從Meta正式離職的LeCun,下一站就是創業世界模型。據《金融時報》爆料,其新公司名為Advanced Machine Intelligence Labs(AMI Labs),計畫於明年一月正式亮相,目標估值30億歐元(約247億人民幣)。在LeCun的理解中,世界模型所要追求的不是渲染精美的像素,而是掌握控制理論和認知科學。他認為對AI而言,只有中間那個抽象表徵才重要(和JEPA研究一脈相承),模型沒必要浪費算力去生成像素,只需專注於捕捉那些能用於AI決策的世界狀態。換言之,瞭解“世界的結構是什麼”才是最關鍵的。而哈薩比斯這邊也在採訪中多次表示,世界模型絕對是自己和Google接下來的重點。今年8月,GoogleDeepMind推出了新版世界模型Genie 3。哈薩比斯表示:我們談論的世界模型,指的是那種能夠理解世界運行機制中因果關係與協同效應的模型,也就是一種“直觀物理學”——事物如何運動、如何相互作用、如何表現。你已經可以在當前的視訊模型中看到這種能力的雛形。而檢驗是否真正具備這種理解的一種方式是否能夠建構一個逼真的世界。因為如果你能夠生成它,那麼在某種意義上,你就已經理解並內化了這個系統的運作規律。這也解釋了為什麼Genie、Veo這些模型首先會以視訊模型的形式出現。在他看來,這種可互動的世界模型正是通往AGI的關鍵一步。通過對比,我們能發現雖然二者都是在描繪“世界模型”,但他們的理解和實踐方向也明視訊記憶體在差別——LeCun代表著“世界模型即認知框架”,而Google哈薩比斯代表著“世界模型即模擬器”。嗯,同一個概念,不同的理解和實踐——怎麼不算一種call back呢?(手動狗頭)Anyway,回顧歷史,實際上AI的每一次躍遷都伴隨著這樣的“爭吵”:符號主義和連接主義的爭論,定義了智能的根基究竟是“邏輯”還是“資料”;端到端學習和模組化系統的爭論,定義了“系統該如何建構”;再加上我們今天的“開源VS閉源之爭”、“智能本質之爭”……還是那些老話,“真理不辯不明”、“真理越辯越明”。不過玩笑說說,等到真理辯明了,那個老頭可要來了……One More Thing幾乎同一時間,LSTM之父Jürgen Schmidhuber又出來隨機掉落了一個“小彩蛋”,他預判了預判——LeCun即將創業的世界模型,他們在2014年就有涉獵了(原話是二者高度相似)。怎麼說呢,Jürgen Schmidhuber老爺子這幾年,基本都在“維權”了。作為LSTM的發明者,LSTM一度在ChatGPT誕生前被稱為“最具商業價值的人工智慧成就”,而作為LSTM之父,Jürgen Schmidhuber早在三巨頭獲得圖靈獎之前就被《紐約時報》稱為“成熟人工智慧之父”。但當AI時代真正到來,各種技術發明者桂冠沒有他、圖靈獎沒有他、諾貝爾獎也沒有他……Schmidhuber只能一次次維權、隔空懟人,最後成為祥林嫂·Schmidhuber。幸好,還有推特,可以讓他首頁上清晰完整展示——以及推特當前的擁有者馬斯克,他評價Jürgen Schmidhuber時言簡意賅:一切的發明者。這,確定不是在陰陽八卦? (量子位)
90後華人科學家:超一億美金年薪背後的權力遊戲
一紙離職信,震動矽谷AI版圖。2025年11月20日,圖靈獎得主、被譽為“AI教父”之一的楊立昆(Yann LeCun)在領英上發表告別辭,宣佈將於年底離開效力12年的Meta。這位曾一手締造FAIR(基礎人工智慧研究實驗室)輝煌的宗師級人物,在65歲之際選擇重新出發,追尋關於“世界模型”的未竟理想。楊立昆的離去,標誌著Meta AI戰略路線徹底轉向:從FAIR所代表的學院派長期理想主義,全面倒向以產品化與商業落地為導向的實用主義。這一歷史性轉身的背後,是Meta內部早已展開的權力重組。就在數月前,年僅30出頭的華人科學家趙晟佳(Shengjia Zhao)——前OpenAI核心開發者——空降Meta,引發組織震動。趙晟佳的加盟充滿戲劇性:入職不到30天便萌生去意,祖克柏親自以“首席科學家”頭銜與天價薪酬極力挽留。他的“上位史”,成為矽谷AI人才爭奪白熱化的真實縮影。當圖靈獎得主楊立昆選擇離開堅守12年的Meta,當30歲的趙晟佳以超一億美金年薪空降矽谷,這場看似簡單的新老交替背後,是一場關乎AI技術路線、企業戰略與文化認同的深層博弈。從OpenAI到Meta,從清華園到矽谷,這位年輕科學家的選擇不僅改變著個人命運,更在重塑科技巨頭間的權力天平。圖源:Shengjia Zhao 的 X清華少年到史丹佛博士的進階翻開趙晟佳的履歷,一條近乎完美的頂尖學者成長路徑徐徐展開。2012年,他考入清華大學機械工程系,後因對電腦的濃厚興趣轉至電腦系,於2016年取得學士學位。在清華的四年裡,他的視野遠不限於課堂。2014年,趙晟佳赴美國萊斯大學交換學習,這段經歷徹底打開了他的學術視野:課堂講座常延續至深夜討論,各類想法在交流中不斷被檢驗、挑戰與完善。更重要的是,他在跨文化、跨學科的協作中,學會了以多元視角理解和推進科研。本科畢業後,他將目光投向了矽谷。2016年,趙晟佳進入史丹佛大學攻讀電腦科學博士,師從Stefano Ermon教授。在六年的博士生涯中,他全心投入深度生成模型、變分推斷等前沿方向。其代表作《InfoVAE: Balancing Learning and Inference in Variational Autoencoders》於2019年發表在AAAI,至今引用量已超23000次,成為該領域的里程碑論文。博士期間,他幾乎囊括了各類頂尖獎項:ICLR 2022傑出論文獎、Google卓越獎學金、高通創新獎(QinF)、摩根大通博士獎學金等。(趙晟佳的教育經歷)然而,真正讓他在全球AI領域聲名鵲起的,是在OpenAI的三年。2022年6月博士畢業後,趙晟佳作為技術團隊成員加入OpenAI。當時ChatGPT尚未面世。他不僅是ChatGPT、GPT-4、GPT-4.1的早期核心開發者,更是OpenAI推理模型體系的關鍵奠基者——主導了“o1”與後續“o3”系列的研究。“o1”在AI業界的影響堪稱技術核爆。它將思維鏈從理論概念轉化為可規模化部署的產品,使AI從機率性的語言續寫工具,躍升為具備類人邏輯推理能力的系統。這一突破迅速引發Google、DeepSeek、xAI等全球頂尖實驗室的跟進。與此同時,他還領導OpenAI的合成資料團隊,在行業深陷高品質資料匱乏的困境中,建構了一套可複製、可擴展的資料生成範式。可以說,在Meta向他伸出橄欖枝之前,趙晟佳已是當代生成式AI技術範式的重要建構者之一。他掌握了業內競相追逐的“新型擴展範式”——對於急於在AGI賽道實現反超的祖克柏而言,他無疑是必須爭取的關鍵人才。三十天離職危機今年夏天,Meta陷入了前所未有的焦慮與混亂。公司寄予厚望的Llama 4模型發佈後表現平平,更因"性能評測造假"爭議而聲譽受損。面對OpenAI和Google的持續領跑,以及中國AI實驗室在開源領域的快速追趕,祖克柏決定放手一搏。他斥資143億美元收購資料標註巨頭Scale AI,並任命其28歲的創始人Alexandr Wang為Meta首席人工智慧官。隨後,旨在整合公司所有AI資源的"Meta超級智能實驗室"(MSL)正式成立,標誌著Meta向AGI發起了全面衝刺。為了給MSL配備頂尖人才,Meta開啟了一場瘋狂的挖角行動。祖克柏不僅親自向目標研究人員傳送邀請郵件,還安排他們在其太浩湖莊園進行面談。Meta開出了高達九位美元的薪酬方案,其中部分offer的有效期僅有幾天。正是在這樣的背景下,趙晟佳被Meta從OpenAI成功挖來。更引人注目的是,圍繞著他迅速集結了一支實力雄厚的華人科學家團隊:團隊成員包括前OpenAI多模態後訓練研究負責人畢樹超、前OpenAI感知技術研究負責人及Gemini多模態部門聯合創始人余家輝、OpenAI o3-mini和o1-mini的核心開發者任泓宇、前OpenAI電腦視覺專家常慧雯,以及前Google DeepMind高級研究科學家翟曉華。祖克柏為這支夢之隊承諾了頂級資源支援。據悉,趙晟佳和MSL團隊將能夠使用計畫於2026年建成的"普羅米修斯"計算叢集,該叢集擁有高達1000兆瓦的電力供應,足以支撐前所未有的超大規模AI訓練。然而,這段"聯姻"在開始後不久就面臨危機。據多家媒體報導,趙晟佳加入Meta僅數日,就遭遇了嚴重的管理混亂和文化衝突。MSL內部資源分配不公、官僚作風盛行,承諾的算力資源遲遲未能兌現,這讓習慣OpenAI高效科研環境的趙晟佳深感不適。知情人士透露,趙晟佳當時已決定離開,甚至與老東家OpenAI達成了回歸協議,並簽署了入職檔案。這一消息對祖克柏而言無異於當頭一棒。若這位重金聘請的頂尖人才在入職不到一個月就重返競爭對手,不僅將使Meta顏面盡失,更將對其重振AI雄心的計畫造成致命打擊。為留住趙晟佳,祖克柏展現了驚人的決斷力。他直接介入,打破常規,授予趙晟佳"Meta超級智能實驗室首席科學家"頭銜,並正式確立其領導地位,要求其直接向自己和Alexandr Wang匯報。祖克柏更在Threads上高調宣佈這一任命,特別強調趙晟佳是實驗室的聯合創始人,"從第一天起就是我們的首席科學家"。這不僅是一次薪酬留人,更是一次地位與權力的鄭重承諾。最終,趙晟佳選擇留下,成為Meta AI版圖中僅次於祖克柏和Alexandr Wang的第三號關鍵人物。權力更迭暗戰趙晟佳最終選擇留下,但Meta的內部動盪遠未平息。事實上,MSL的成立與趙晟佳的迅速上位,恰恰催化了Meta新舊勢力更替下的深層矛盾。儘管趙晟佳被成功挽留,同期加入的其他頂尖人才卻未能適應。據外媒報導,與趙晟佳同期加盟的兩位前OpenAI研究員——Ethan Knight與Avi Verma,在入職不到一個月內相繼離職,重返OpenAI。來自GoogleDeepMind的研究科學家Rishabh Agarwal也在短短數月後選擇離開。對這些頂尖研究者而言,Meta雖能提供豐厚的薪酬,卻難以復現他們理想的科研環境。一位離職員工坦言:“人才終將流向能產生共鳴的地方。缺乏內在凝聚力的體系,終會從內部瓦解。”與此同時,管理層的“低齡化”與信任危機逐漸浮現。統管Meta AI全域的Alexandr Wang年僅28歲,此前並無人工智慧領域的研究經驗,其背景主要來自營運資料標註公司Scale AI。這種“外行領導內行”的局面,在內部引發了諸多資深科學家的困惑與不滿。有內部人士透露,Alexandr Wang所帶來的Scale AI高管團隊與Meta原有體系格格不入,管理方式簡單直接,甚至導致Meta與Scale AI在資料合作層面出現裂痕。更深遠的影響體現在FAIR實驗室的邊緣化。在MSL成立前,由楊立昆一手打造的FAIR實驗室一直是Meta AI的金字招牌。然而在新架構下,FAIR被整體併入MSL體系。儘管楊立昆名義上仍保留FAIR首席科學家頭銜,但在匯報關係上,這點陣圖靈獎得主需要向28歲的Alexandr Wang匯報。儘管祖克柏與楊立昆本人均公開否認角色變化,但在外界看來,隨著公司資源全面向以產品化為導向的MSL傾斜,堅持“世界模型”長線研究的FAIR團隊,實際上已失去對Meta核心AI戰略的主導權。Llama 4的失利成為壓垮駱駝的最後一根稻草,也成為楊立昆選擇體面離開的導火索。儘管雙方在分手聲明中保持了極大的克制,甚至達成了投資合作的“第三條道路”,但楊立昆的離去,無疑標誌著Meta AI那個充滿理想主義的學術時代正式落幕。面對重重挑戰,Meta正嘗試踩下剎車。據《金融時報》獲得的內部備忘錄顯示,Meta已暫停MSL除關鍵崗位外的所有招聘,以期在制定新戰略的同時更審慎地規劃未來。而這一切的挑戰,恰恰發生在個人能力與時代機遇碰撞的關鍵節點。對趙晟佳而言,出任首席科學家僅僅是開端。他不僅需要帶領團隊在技術上追趕GPT-4、打造更強大的Llama 5,更要在Meta複雜的官僚體系與文化衝突的夾縫中,為祖克柏找到通往AGI的可行路徑。而這場權力更迭的意義,早已超越了趙晟佳個體職業生涯的起落。它對應出整個AI產業在理想與現實間的艱難平衡,也預示著科技巨頭在AGI征程上更加激進的投資邏輯。這位90後華人科學家必須證明:超一億美金的薪酬背後,是與之匹配的遠見與實力。在趙晟佳按下"普羅米修斯"叢集啟動鍵的那一刻,一場新的AI競賽已經悄然開始。 (首席商業評論)
Fortune雜誌─圖靈獎得主楊立昆被曝將離職Meta創業
據《金融時報》援引知情人士消息,AI圈知名大佬楊立昆已告知同事,再過幾個月他就要離開Meta公司,創辦自己的公司了。楊立昆是圖靈獎得主,也是AI領域的頂尖研究者。他致力於打造自己眼中的下一代AI系統。但是他的離職,也必定會成為Meta公司乃至整個AI行業的一個重要轉折點。2025年11月5日,楊立昆博士在倫敦聖詹姆斯宮出席2025年度伊麗莎白女王工程獎招待會。圖片來源:Yui Mok / Pool—Getty Images楊立昆今年65歲,他於2013年12月加入Facebook,擔任基礎AI研究室(FAIR)創始主任。他從2003年起在紐約大學任教,目前仍擔任該校的銀級教授。楊立昆的學術成就十分傲人。最為人熟知的,就是他在上世紀80年代末研發出了摺積神經網路,特別是他開發的LeNet架構能夠成功識別手寫字體,掀起了一場電腦視覺領域的革命。2019 年,他與傑佛瑞・辛頓、約書亞・本吉奧三人因在深度學習領域的突破性貢獻而被授予圖靈獎。而正是這三人在理論上的奠基,才使深度神經網路成為當代電腦科學的一項核心技術。在電腦科學領域的早期成就楊立昆1960年7月8日出生在法國的蘇瓦西蘇蒙莫朗西。他父親是一名工程師,因而他從小就對電子裝置產生了興趣。後來他考入了巴黎高等電子與電工技術工程師學院(ESIEE Paris),於1983年獲得電氣工程文憑。隨後他在巴黎第六大學攻讀電腦科學博士學位,1987年發表了一篇關於連接學習機制的博士論文,他在論文中提到了一種早期形式的利用反向傳播演算法訓練神經網路的方法。不過在那個時代,搞神經網路還被認為是一個不切實際的任務。博士畢業後,楊立昆在多倫多大學與傑佛瑞・辛頓共事,進行了一年博士後研究,然後於1988年加入了AT&T公司的貝爾實驗室。正是在那裡,他研發出了摺積神經網路——這一突破性技術能讓電腦能夠以模擬人類視覺的方式處理圖像資訊。他的手寫數字識別系統效果顯著,美國國家現金出納機公司(NCR)從90 年代中期開始,將該技術應用於銀行支票讀取機,最高峰時期處理了全美國10%至20%的支票。楊立昆還主持研發了DjVu圖像壓縮技術,該技術讓網際網路檔案館等數位圖書館能夠線上分發掃描文件。之後,他曾在NEC研究所短暫任職,後加入紐約大學。Meta的離職潮目前,Meta公司正在試圖對其AI戰略進行全面調整。今年6月份,Meta向資料標註公司Scale AI投資143億美元,並聘請該公司CEO、28歲的美籍華人汪滔領導該公司新成立的部門“Meta超級智能實驗室”。這次重組對楊立昆本人也有一些影響,他之前要向Meta的首席產品官克里斯・考克斯匯報工作,現在卻要向汪滔匯報工作了。這次結構調整,也反映出了Meta公司內部更深層的戰略分歧。目前,Meta的Llama 4模型未達預期,Meta在AI上整體落後於OpenAI和Google等競爭對手,在此背景下,Meta的老闆馬克・祖克柏傾向於加快部署大語言模型和AI產品,而楊立昆之前曾公開表示,他對大語言模型持懷疑態度,因為他認為大語言模型永遠無法達到人類等級的推理和規劃能力。據《金融時報》報導,楊立昆的創業計畫還初在洽談融資的初期階段。他的新公司主要聚焦於他所謂的“世界模型”——這種模型是通過學習視訊和空間資料,來對環境產生內在理解,而非單純依賴文字資料。他此前經表示,這種系統旨在模擬因果場景並預測結果,但它可能需要十年左右的時間才能成熟。Meta的戰略轉型也並不是一帆風順的。今年早些時候,Meta的多名前員工曾對《財富》透露,由於公司資源向商用AI傾斜,導致長期研究受到忽視,FAIR實驗室現在實際上已處在一種半死不活的狀態。Llama模型原始研究論文的作者有超過一半在論文發表後數月內離開了Meta。今年10月份,Meta裁撤了AI部門的大約600個崗位。因此,儘管楊立昆的離職是一項重大人事變動,但它也突顯了行業內的一個核心分歧——在當下的AI行業中,不同產品的競爭日趨激烈,而究竟那條路才能達到最終所謂的“通用型人工智慧”(AGI),AI研究者在其中又應扮演什麼樣的角色,人們的看法是存在明顯差異的。(財富FORTUNE)