Reid Hoffman是 LinkedIn 的聯合創始人,也是矽谷最早一代以“平台”和“網路效應”著稱的投資人之一。過去二十多年,他幾乎參與了每一輪網際網路結構性轉折,從社交網路到平台化擴張,再到企業級軟體的規模化落地。在生成式 AI 被資本和創業者高度追捧的當下,這位長期站在“增長與規模”一側的矽谷代表人物,卻在最近一場長時間訪談中,把注意力放在了一個不太符合矽谷直覺的判斷上:AI 時代最重要的機會,可能並不在那些增長最快、也最容易被看見的地方。顯眼的賽道,正在變得擁擠Hoffman 並沒有否認聊天機器人、生產力工具或程式設計助手的商業價值。在他的判斷中,這些方向仍然可以賺錢。但問題在於,它們過於顯眼。當一個機會對所有人都是顯而易見的,資本、人才和算力就會沿著最低摩擦路徑迅速集中,結果往往不是長期優勢,而是更快的同質化競爭、更激烈的分發爭奪,以及更短的窗口期。這並非技術失效,而是競爭結構本身在壓縮回報。在 AI 語境下,“人人看得見”正在從優勢轉化為約束。入口在變,約束並沒有消失訪談中,Hoffman 多次回到一個被反覆忽略的判斷維度:那些東西會變,那些東西不會變。平台入口可以改變,產品形態可以重寫,敘事方式也可以不斷翻新,但一些底層約束始終存在,包括網路效應的累積方式、企業系統的整合成本、信任的遷移路徑,以及分發背後的組織慣性。AI 並不會消除這些約束,只會讓它們以更快、更集中的方式重新顯現。所謂“新世界”,最終仍然要回到這些舊問題上,只是整合失敗的代價更高,贏家通吃的程度也更明顯。矽谷的盲點,不在技術而在節奏Hoffman 將自己最重要的判斷,放在他所說的“矽谷盲點”上。這些盲點並非源於能力不足,而是源於耐心不足。矽谷長期擅長低摩擦、可快速迭代的數字系統,卻對發展節奏慢、驗證成本剛性、又受到監管與倫理約束的系統缺乏投入意願。生物與醫療是最典型的例子。藥物發現和醫療研發看起來像資訊問題,但真正的節拍器並不在程式碼倉庫裡,而在實驗室、倫理審查、臨床試驗和審批流程中。AI 可以提升篩選和預測的效率,卻無法取消實驗本身。失敗率是結構性的,周期也無法被壓縮到軟體速度。原子世界的瓶頸,是經濟而不是演算法在機器人和自動化領域,Hoffman 指出了另一種常被忽視的現實約束。看似簡單的物理動作——抓取、整理、疊放——在現實環境中充滿不確定性。材料的柔性、觸覺反饋、環境變化以及長期維護成本,使得技術可行性並不等同於經濟成立。由此出現一個反直覺現象:白領世界中更複雜的工作,反而更早被 AI 改造;而物理世界中看起來更簡單的動作,卻因為資本支出與營運支出的不匹配,遲遲難以規模化。決定成敗的,並不是演算法是否足夠聰明,而是成本曲線是否真正交匯。醫生不會消失,但角色正在被重寫關於“AI 是否取代醫生”的討論,Hoffman 給出的判斷並不激進,卻相當明確。如果醫生的價值只是知識儲存,那麼這個角色已經開始被削弱。AI 在知識覆蓋、檢索和交叉驗證方面的能力,已經超過任何單一人類個體。但醫生並不會消失。未來的核心價值,將更多體現在非共識問題的判斷、情境理解以及責任承擔上。AI 改變的不是職業是否存在,而是職業內部的分工結構。回報正在向高摩擦系統轉移把這些判斷連在一起,Hoffman 勾勒出的並不是一個關於 AI 的樂觀敘事,而是一張重新定價風險與回報的地圖。隨著顯眼賽道的競爭加速,資本和能力正在被迫進入那些節奏更慢、驗證成本更高、也更難被快速複製的系統——包括醫療、生物、勞動力、自動化、政府治理以及教育等領域。在這些地方,技術本身不再是決定性變數,時間、監管和組織慣性開始重新進入定價體系。生成式 AI 並沒有讓世界變得更簡單,它只是重新分配了複雜性。而真正的長期機會,正在這些複雜性尚未被消化的地方,緩慢浮現。 (方到)