#AI工程師
薩姆·奧特曼談AI的未來:AI 將顛覆“工程師”定義;人類注意力成稀缺資源;AI 成本將降 100 倍……
Sam Altman在 OpenAI 的 Town Hall 會議上與AI建構者們進行對話,他主要談了以下觀點:Sam Altman 認為,AI 正在重新定義“工程師”與“創造者”的角色。未來的軟體開發門檻極低,人類不再主要手寫程式碼,而是通過指令與 AI 協同完成複雜建構。AI 會讓人人都能開發、擁有個性化的軟體,但真正的瓶頸將轉向“如何讓人關心”——在注意力稀缺時代,創意與市場執行力仍是核心競爭力。他強調,多智能體(agent)與工具生態將百花齊放,不會形成單一壟斷。最大機會是在人機互動層——讓更多人真正高效使用模型。AI 的通用性與專業性會不斷融合,未來的模型既能推理又能寫作溝通。Altman 預測,AI 是強通縮力量,將極大降低創造成本並改變經濟結構,同時帶來巨大的個人賦能與潛在不平等風險。政策應防止權力過度集中。科學研究將進入“人機共研”階段,AI 扮演“無限博士後”,而人類提供直覺與判斷。在安全上,他主張從“限制訪問”轉向“提升韌性”,尤其關注生物安全領域。教育與創意領域中,人類仍以情感與洞察為核心,AI 是思維與合作的放大器。未來關鍵技能不再是程式設計,而是主動性、創造力、判斷力與合作。總體而言,Altman 描繪的是一個“人人可借 AI 實現想法”的時代——技術普及,但人性與社會設計將決定其真正價值。訪談完整實錄如下:Sam Altman: 非常感謝大家前來。當我們著手構思下一代開發者工具,以及如何駕馭即將問世的強大模型時,我們渴望聽取大家的想法與顧慮,並回答各位的疑問。希望今天的交流能讓我們更清晰地知道該為大家建構什麼,以及如何讓這些強大的模型真正發揮效用。我想先從 Twitter 上的一個問題開始。關於軟體工程領域的傑文斯悖論(Jevons paradox),你們持何立場?如果人工智慧大幅降低了程式碼生成的門檻和成本,這會減少對軟體工程師的需求嗎?還是說,更廉價的定製軟體會極大地刺激需求,讓工程師在未來幾十年仍有飯吃?我認為“工程師”的定義將發生巨變。 未來的價值創造,將更多地源於指揮電腦完成自己的工作、替他人完成工作,以及構想如何為他人創造有價值的體驗。工作的形態——無論是在編寫程式碼、偵錯,還是其他任務上花費的時間——都將徹底改變。工程領域經歷過多次類似的演變,每一次——至少到目前為止——結果都是更多人得以參與其中,發揮作用,世界也因此變得更加“軟體化”。對軟體的需求似乎從未放緩。我的預測是,未來我們許多人將使用專為個人或極少數人編寫的軟體,並且我們將持續定製屬於自己的軟體。因此,我認為我們將見證更多人指揮電腦去實現他們的想法,這與我們今天的工作方式截然不同。如果你們把這也算作軟體工程,那麼我們將會看到這種實踐的大爆發。我相信,全球 GDP 中將有更大比例通過這種方式創造和消費。現場提問者: 首先感謝給我們提問的機會。作為消費者,我是 ChatGPT 的重度使用者。我在 Reddit 上看到大家用 Codex、Lovable 或 Cursor 建構各種東西。但現在的瓶頸似乎變成了“推向市場”(Go-To-Market, GTM),對吧?我可以把東西造出來,但如何找到願意為此買單或受益的人?這才是瓶頸。我想聽聽您的看法。Sam Altman: 在我之前於 Y Combinator 工作時,創業者們常說:“我原以為最難的是建構產品,結果發現最難的是讓別人關心、使用或喜愛它,或者是建立人與產品的連接。”這一點從未改變,只不過現在建構產品變得如此容易,才讓這種反差更加明顯。對此我沒有簡單的答案。建立成功的企業、尋找差異化價值、搞定市場推廣,這些始終是難題。舊的商業法則依然適用。 AI 降低了軟體開發的門檻,但這並不意味著其他環節也會隨之變得簡單。當然,就像 AI 改變了軟體工程一樣,人們也開始利用它實現銷售和行銷的自動化,並取得了一定成效。但這註定是艱難的,因為即便在一個物質極大豐富的世界裡,人類的注意力依然是極度有限的資源。你永遠在與其他試圖建立市場管道、爭奪分銷網路的人競爭,而每一個潛在客戶都忙得不可開交。我可以構想一個未來:當一切都極大豐富時,人類的注意力將成為僅存的稀缺商品。所以,這依然會很艱難,你必須有極具創意的想法,打磨出偉大的產品。George: 謝謝 Sam,我是 George,一名獨立開發者。我正在基於 Codex SDK 開發,試圖建構一種協調多個智能體(Agents)的方法。我有關於你們的“智能體建構工具”及其產品願景的問題。目前它主要是工作流和鏈式提示詞。我想知道,作為一個基於此開發的開發者,我的處境安全嗎?你們認為未來會有各種不同的多智能體協調 UI 共存的空間嗎?還是說 OpenAI 會壟斷這一領域?Sam Altman: 不,我們並不認為自己掌握了最佳介面的終極答案,也不確定人們最終會如何使用它。我們確實看到有人建構了令人驚嘆的多智能體架構,也有人做出了極佳的單一互動式線程。我們無法獨自解決所有問題,而且並非所有人的需求都一致。這就好比老電影裡的場景,有人喜歡坐在 30 個螢幕前,監控著瘋狂的系統,進行各種操作;也有人只想要一種非常平靜的語音模式,每小時只跟電腦說一句話。電腦在後台處理大量事務,不需要持續監督,他們只需深思熟慮後下達指令。就像許多事物一樣,人們需要嘗試不同的方法來找到自己的偏好。世界可能會收斂於幾種主流模式,但我們無法預知一切。我認為,建構工具來幫助人們高效利用這些極其強大的模型,是一個極好的方向。這正是目前所缺失的。模型的能力與大多數人理解並利用這些能力之間,存在著巨大且不斷增長的鴻溝。 肯定會有人建構出真正填補這一鴻溝的工具,但目前還沒人完全做到。我們也會嘗試推出自己的版本,但這個領域空間廣闊,且使用者偏好各異。如果你們有任何希望我們建構的功能,請告訴我們,我們會嘗試。Valerie Chapman: 你好 Sam,我是 Valerie Chapman,我正在 OpenAI 平台上開發 Ruth。我很想聽聽你的看法:目前女性因薪酬差距遭受了巨大的經濟損失。你認為人工智慧如何解決這幾十年來存在的經濟不平等問題?Sam Altman:這有個好消息——當然情況也很複雜——但在我看來,主要的利多在於:人工智慧將帶來強大的通貨緊縮效應。我對此做過反覆推演,雖然你可以想像一些極端情況,比如全世界的資金都湧向自我複製的資料中心等,但總體而言,特別是考慮到腦力勞動的進步,以及機器人技術等領域即將到來的突破,我們將面臨巨大的通貨緊縮壓力。我之所以說“絕大多數是好消息”,是因為雖然仍有一些複雜的問題待解,但事物的成本將大幅降低。除了那些受限於社會或政府政策阻礙的領域(比如在舊金山建造更多住房),我預計這種變化將相當強勁且迅速。無論社會結構是否天然向個人傾斜,個人賦權(Personal Empowerment) 看起來都將日益增強。我至今仍覺得很難完全消化這一變革的深遠意義。我敢斷言,到今年年底,僅需幾百或一千美元的推理算力成本,你就能完成以前需要一個團隊耗時一年才能建構的軟體。 這真的很難——至少對我來說——很難完全理解這種經濟變革的規模。這應當是一件極具賦權意義的事情。海量的資訊觸手可及,創造新事物、新公司以及發現新科學的成本急劇下降。我認為這應該成為推動社會公平的力量,讓那些未曾獲得公平對待的人擁有真正的機遇。當然,前提是我們不能在政策上搞砸,因為風險確實存在。我擔心在一個想像中的世界裡,人工智慧會導致權力和財富的過度集中。因此,避免這種情況發生,必須成為政策的主要目標之一。Ben Hilak: 大家好,我是 Raindrop 公司的 CTO Ben Hilak。我想請教一下,在展望未來時,您如何看待模型“專業化”與“通用化”之間的平衡?比如 GPT-4.5,我認為它是第一個真正擅長寫作的模型。我至今記得看到它的輸出時感嘆:“寫得真棒”。最近在 Twitter 和 X 上有很多關於 GPT-5 寫作能力以及 ChatGPT 變得有些難以駕馭、晦澀難懂的討論。當然,GPT-5 是一個更好的代理模型,在工具使用、中間推理等方面都表現出色。感覺現在的模型有點“偏科”(Spiky),甚至更極端了——在程式設計等領域非常突出,而在寫作等領域則稍遜一籌。我想知道 OpenAI 是如何看待這一特徵的?Sam Altman: 我們在這方面確實做得不夠好。我們希望未來的 GPT-5 系列版本在寫作上能比 4.5 更出色。我們確實決定——並且我認為理由充分——將 5.2 版本的大部分精力投入到提升智能、推理、程式設計和工程能力上。我們的精力畢竟有限,有時難免顧此失彼。但我相信未來將主要是非常優秀的通用模型。即使你想開發一個專精程式設計的模型,如果它也能寫得一手好文案,那就更完美了。比如,當你讓它生成一個完整的應用程式時,你會希望其中包含優質的文字;當它與你互動時,你會希望它擁有周到、敏銳的個性並能清晰溝通。我所說的“寫得好”是指思路清晰,而非單純的辭藻華麗。所以我希望未來的模型能在所有這些方面都變得非常出色。我相信我們能做到。智能具有相當的靈活性,我們可以讓單個模型兼顧各方。現在確實是推動“編碼智能”的關鍵時刻,但我們也會努力在其他方面迅速補齊短板。稍後我會回答幾個來自 Twitter 的問題,請繼續。現場提問者2: 我是 Unify 公司的 CTO。您剛才提到我們正在做市場推廣自動化。我們一直在思考並投入精力的是“永遠線上的 AI”,也就是您之前提到的“智能將便宜到可以隨意使用”。對我們而言,為客戶運行數百萬甚至上億個代理(Agents)的最大瓶頸是成本。您如何看待小模型的發展、成本問題,以及未來幾年開發者將迎來的顯著成本降低?Sam Altman: 我認為我們可以在 2027 年底之前提供類似 GPT-5 水平的高級智能……有人想猜猜成本嗎?我猜至少會便宜 100 倍。但還有一個我們過去沒太考慮的維度。現在隨著模型輸出變得越來越複雜,人們對交付速度(Latency)的要求甚至超過了成本。我們在降低成本曲線上一直做得很好——你可以看看從最初的 o1 preview 到現在的進步。但我們之前沒有過多考慮如何在保持同樣輸出質量的前提下大幅提升速度,這可能導致成本上升。對於你提到的許多應用場景,人們會非常需要高速度。我們必須弄清楚如何在這兩者之間取得平衡,不幸的是,這是兩個截然不同的難題。假設我們只關注成本,假設這是你和市場想要的,那我們可以將成本降得非常低。也就是回答幾個關於介面的問題:當前的介面並非為代理而設計。關於定製化代理介面的創新如何加速微應用趨勢?我在自己最近使用 Codex 的過程中注意到了這一點。我不再將軟體視為靜態的事物。 如果我有一個小問題,我希望電腦能立即編寫程式碼來解決它。這種趨勢將進一步發展。我預感,我們要徹底改變使用電腦和作業系統的方式。我不認為每次需要編輯文件時,都會當場編寫一個新版本的文書處理器,因為我們習慣了固定的介面,按鈕的位置也很重要。但對於很多其他事情,我們會期望軟體是為我們“量身定製”的。也許我每次都用同一個文書處理器,但我有一些獨特的使用習慣,我希望軟體能越來越適應我——即核心軟體是靜態或緩慢演進的,但體驗是高度定製的。我的用法和你的不同。這種工具不斷演變並僅為我們個人收斂的趨勢,似乎即將發生。當然,在 OpenAI 內部,大家已經將 Codex 融入工作流程,每個人都有自己的定製小功能,使用方式大相逕庭。這一點似乎是肯定的。關於“建構者應該如何考慮持久性”以及“初創公司的功能是否會被模型更新取代”的問題,也就是你問的“OpenAI 承諾不會吞噬那一層堆疊”?認為商業的“物理定律”已經完全改變是很誘人的,但實際上並沒有。或許它們會隨時間改變,但目前唯一改變的是:你可以更快地完成工作,更快地建立新軟體。但是,建構成功初創公司的所有其他規則——獲客、市場切入、使用者粘性、護城河、網路效應、競爭優勢——這些統統沒有變。這對我們也一樣。有很多初創公司做了我們在完美世界裡本該早點做的事,但現在已經太晚了,因為他們已經建立了真正的持久優勢。這種情況將繼續發生。我總是給人們一個通用的思考框架:如果 GPT-6 是一次驚人的重大升級,你的公司會因此高興還是難過? 我鼓勵大家建構那些隨著模型變強而受益的產品。有很多東西可以這樣建構。反之,那些僅僅依靠修補模型缺陷(而模型升級後缺陷消失)的生意,雖然如果積累了足夠優勢也能存活,但這是一條更艱難、壓力更大的道路。最後一個問題,關於代理(Agent)。代理能夠自主運行長時間工作流程而無需持續人工干預的現即時間表是多久?考慮到即使簡單的鏈上任務通常在五到十步後就會中斷。OpenAI 有人想回答嗎?現場提問者3: 我覺得這很大程度上取決於任務類型。在 OpenAI 內部,我們看到人們以一種非常特殊的方式使用程式碼提示(Code Prompting)。也許他們在使用 SDK,就像一個自訂框架,不斷提示它繼續運行。所以,這主要不是“何時”的問題,而是“視野拓展”的問題。如果你有一個非常具體的、你非常瞭解的任務,不妨今天就去嘗試。如果你一開始就想“我要提示模型去建立一家公司”,那是一個過於開放的問題,驗證循環會非常困難。所以我建議你思考:如何將其分解成不同的子問題,讓代理可以自我驗證,最後由我來驗證最終輸出?隨著時間推移,我們可以讓代理處理越來越廣泛的任務。Sam Altman: 還有其他問題嗎?Sam: 嗨,Sam。我想回到關於人類注意力和 GTM(市場推廣)的問題上。我一直認為,從消費者角度看,人類的注意力是限制因素;而對於建構者來說,限制因素是想法的質量。我想問的是:我花了很多時間幫助 AI 公司制定 GTM 策略,但很多時候,他們的產品實際上並不值得人們關注。那麼,人們如何才能提出好想法?你們可以建構什麼樣的工具來提高人們想法的質量?Sam Altman: 很多人喜歡將 AI 的輸出稱為“垃圾內容”(Slop),但世界上也有很多人類製造的“垃圾內容”。提出好的新想法非常困難,我越來越相信,我們思考的邊界受到工具的限制。我認為我們需要建構幫助人們產生好想法的工具。隨著創作成本的持續暴跌,我們將能夠建立非常緊密的反饋循環,從而更快地篩選出好想法。隨著 AI 能夠發現新的科學知識並編寫複雜的程式碼庫,我相信全新的可能性空間將會打開。很多人都有過這種體驗:坐在 AI 面前(比如一個程式碼生成器),卻不知道下一步該問什麼。如果我們能建構工具,分析你過去所有的工作和程式碼,找出對你可能有用或有趣的東西,並不斷提出建議,這將非常有幫助。這就好比提供一個極佳的“頭腦風暴夥伴”。我生命中有三四個人,每次見完他們,我都會帶走很多新想法。像 Paul Graham 在這方面簡直是頂級的。如果我們能建構一個“Paul Graham 機器人”,你可以與之互動來激發新想法——即使其中大部分都很糟糕,即使你對 100 個想法中的 95 個都說“絕對不行”——我認為這也將對世界上誕生的優秀事物數量做出重大貢獻。模型似乎有能力做到這一點。在使用內部的 5.2 版本時,我們第一次聽到科學家們說,這些模型帶來的科學進展不再是微不足道的。我簡直無法相信,一個能夠提出新科學見解的模型,會無法通過不同的框架和訓練,提出關於產品建構的新見解。Theo: 嗨,我是 Theo,一名開發者 YouTuber 兼 YC 創始人,我也非常想要那個 Paul Graham 機器人。我想問一個偏技術的問題。我真的很喜歡像我們使用的建構塊這樣的技術不斷演進。我經歷過 Web 開發的幾次重大變革,比如遷移到 TypeScript 和 Tailwind 等等。我擔心的是,隨著建構工具越來越好,我們可能會被困在現有的工作方式中。就像美國的電網,一旦建成便難以翻新,導致情況惡化。你是否看到了這種潛在風險?我們是否正在用現有技術建構未來的“地基”,導致未來難以更換?因為即使是讓當前模型使用兩年前的技術去更新程式碼,有時也像“拔牙”一樣痛苦。你認為我們未來能引導模型足夠快地使用新事物嗎?還是說我們已經無法改進現有的技術基建了?Sam Altman: 我認為我們將非常擅長讓模型使用新事物。歸根結底,如果我們正確使用這些模型,它們就是一個通用推理引擎。目前的架構雖然也內建了大量的世界知識,但我們正朝著正確的方向前進。我希望在未來幾年內,模型更新知識、使用新事物以及學習新技能的速度能夠大幅提升,甚至比人類更快。一個值得我們引以為豪的里程碑是:當模型面對全新的事物、環境、工具或技術時,你只需要解釋一次——甚至無需解釋,模型就能自行探索,隨後便能可靠且正確地加以利用。這一天似乎已不再遙遠。現場提問者4: 抱歉,我有一個問題。作為一名較為年長的科學家,我知道做一個科研項目往往會衍生出多個新想法。想法是呈指數級增長的,但科學家用於執行研究的時間卻是線性遞減的(或者說有限的)。 這些工具正在加速這一過程,這太不可思議了。但是我們都很貪婪,想要更多。除了幫助我們在更短時間內追求這些有趣的想法,是否存在一個過渡點,即模型將徹底接管整個科學研究事業?如果會,這通過現有演算法就能實現,還是需要新的想法或世界模型?Sam Altman: 我認為,在大多數領域,距離模型能夠進行真正完全閉環的自主研究,還有相當長的一段路要走。以數學為例,它不需要“濕實驗室”(生物/化學實驗室)或物理輸入。也許只要通過極其深入的思考和不斷更新模型,就能取得巨大進展。但即便如此,目前利用模型取得最大突破的數學家們依然高度參與其中,觀察中間過程並指出“這感覺不對”。直覺告訴我,這是一條人機協作的獨特路徑。我遇到過幾位整天與最新模型協作的數學家。他們進展神速,但所做的工作與模型截然不同。這讓我聯想到國際象棋史上“深藍”(Deep Blue)擊敗卡斯帕羅夫(Kasparov)後的那個時期。曾有一段時間,AI 比人類強,但“人類+AI”(人類挑選 AI 的最佳步法)比單獨的 AI 更強。隨後很快,AI 變得過於強大,人類的介入反而成了累贅。我懷疑許多研究領域也會經歷類似過程。隨著時間推移,事物將變得極其複雜,AI 理解多步邏輯的能力將超越大多數人,甚至所有人。但是,這就涉及到了創造力、直覺和判斷力的問題,這些是我們目前這一代模型還遠未企及的。雖然我找不到原則性的理由說我們永遠無法達到那一點,所以我假設最終會達到。但今天,僅僅說“嘿,GPT-5,GPT-6,去解決數學問題”,肯定不如幾個優秀的專家利用它探索方向來得有效。即使我們可以驗證結果並將其反饋回訓練集,過程中仍有其他因素在起作用。不過,你確實觸及了一個痛點:解決一個問題往往會產生更多新問題。與那些積極使用 AI 的科學家交流非常令人興奮,他們確實燒了很多 GPU,但他們掌握了一項新技能:“這裡有20個新問題,我要對它們進行廣度優先搜尋。我不會深入研究每一個,而是把 AI 當作‘無限的學生助理’。”我最近把這個稱呼升級為“無限的博士後助理”。在物理科學方面,我們常討論是該為每個領域建立自動化濕實驗室,還是依靠全球科學家構思實驗、利用現有裝置並樂意貢獻資料。從科學界擁抱這些工具的熱情來看,分佈式的方式似乎是可行的。這顯然會建構一個更簡單、更美好、更分佈式、匯聚更多聰明才智和多樣化裝置的世界。Emmy: 你好 Sam,我是 Emmy。我是史丹佛大學的學生,經營一家生物安全初創公司。關於科學實驗、雲實驗室及其發展方向,我的團隊花了很多時間思考如何防止 AI 驅動的生物設計帶來危害,同時利用 AI 提升安全基礎設施。我想問的是,在 2026 年的路線圖中,安全處於什麼位置?您是如何思考這些問題的?Sam Altman: 你是指廣泛的安全,還是特指生物安全?Emmy: 都可以,但更傾向於生物安全。Sam Altman: 到 2026 年,AI 會帶來許多潛在風險,其中生物領域的風險讓我們非常擔憂。模型在生物學方面表現得相當出色。目前,全球的戰略主要是限制存取權,並設定各種分類器來阻止人們製造新型病原體。但我認為這種做法不會長久。我認為世界需要為 AI 安全——特別是生物安全——做出轉變:從“阻擋”轉向“韌性”(Resilience)。 我的聯合創始人 Wojciech 用了一個我很喜歡的關於消防安全的類比。火為社會帶來了美好,但也曾燒燬城市。我們曾試圖限制火的使用(比如“宵禁”一詞 cur-few 本意就是 cover fire,掩蓋火源),但這並不是長久之計。後來我們對火災有了更好的“韌性”意識,發明了消防法規、阻燃材料等。現在,社會在這方面做得很好。我認為我們需要以同樣的方式思考 AI。AI 將對生物恐怖主義和網路安全構成重大威脅,但 AI 也是解決這些問題的關鍵。我們需要全社會共同努力,建設這種具有韌性的基礎設施,而不是單純依賴實驗室去“攔截”它們該攔截的東西。未來世界上會有很多強大的模型。我們與許多生物研究人員和公司交流過,探討處理新型病原體所需的條件。很多人報告說 AI 在這方面非常有幫助,但這不會是一個純粹的技術解決方案,世界需要轉換思維方式。我非常擔心現狀,除了“韌性”方案外,我看不到其他出路,而 AI 確實能幫助我們快速實現這一點。如果今年 AI 領域出現某種明顯的重大危機,我認為很可能源於生物領域。到了明年及以後,可能還會出現其他糟糕的情況。Meghna: 你好,我是 Meghna。我的問題關於人類協作。AI 模型非常擅長獨自學習,這讓我反思:如果我能隨時隨地獲得答案,為什麼還要花精力去問另一個人?這涉及到了“人類+AI”的高效產出,但我更想問的是“人類+人類+AI”的協作模式。希望我表達清楚了。Sam Altman: 完全理解。提到教育,雖然我比你們年長,但我上中學時 Google 剛出現。當時老師們試圖讓學生承諾不使用它,理由是“如果你能隨時隨地查到資訊,為什麼還要上歷史課?為什麼還要死記硬背?”這簡直是瘋了。我認為,擁有工具只會讓我更聰明、學得更多、做得更多。禁止使用 AI 就像幾十年前因為有了計算器還要強迫人學算盤或計算尺一樣——這不是一項有價值的技能。我對 AI 工具也持同樣看法。按照目前的教學方式,AI 確實是個挑戰。但這表明我們需要改變教學方式,而不是拒絕 AI。你仍然需要學會思考,而寫作是練習思考的重要方式。但我們如何教授思考以及如何評估思考能力,必須隨之改變,我們不應迴避這一點。所以我認為這會沒事的。那些極具自學能力的人已經做得非常出色了,我們會找到新的教學方法帶動其他學生。關於你提到的協作,即如何讓這件事不僅僅是個人的單打獨鬥?我們正在努力衡量這一點。我懷疑在 AI 普及的世界裡,人際聯絡將變得更加有價值,而非貶值。人們會更加重視與他人的相處和合作。 我們已經開始看到人們探索更便捷的協作介面。在思考製造硬體裝置時,我們首先考慮的就是協作式的“多人+AI”體驗。雖然還沒有人完全掌握,但你會驚訝於 AI 在這方面的潛力。AI 帶來了前所未有的賦能。想像一下,五個人圍坐在一張桌子旁,旁邊有一個 AI 助手(可能是個小機器人),你們作為一個團隊將更具生產力。這將成為常態。每次小組頭腦風暴都會有 AI 參與,幫助團隊做得更好。最後提醒一下,如果你們有什麼需求並告訴我們,我們很可能會去實現它。現場提問者5: 謝謝。我很好奇,隨著代理(Agent)越來越多地投入生產系統,尤其是在大規模部署下,您認為最被低估的故障模式是什麼?是安全、成本還是可靠性?另外,目前那些方面的工作投入不足?Sam Altman: 你提到的問題都很重要。有一件事讓我個人感到驚訝,我相信也讓許多人感到驚訝:當我第一次開始使用 Codex 時,我曾確信絕不會給它完全無監督的電腦存取權。但我只堅持了大約兩個小時。然後我就想,這看起來很合理,代理似乎在做正確的事,我討厭每次都要批准命令。於是我決定開啟一會兒看看——結果從此我就再也沒關過,一直給它完全存取權。我認為其他人也有類似的經歷。所以我的普遍擔憂是,這些工具既強大又便利,但一旦發生故障,後果可能是災難性的。雖然故障率很低,但我擔心我們會因此麻痺大意,抱著“船到橋頭自然直”的心態,逐漸滑向一種聽之任之的境地。隨著模型能力日益增強,我們越來越難以完全理解它們的行為。如果模型出現偏差,或者在長期使用中暴露出隱蔽的複雜問題,你可能會在不知不覺中引入安全漏洞。對於AI失控這種科幻場景,大家看法不一。但我認為,採用這些工具的誘惑——不僅是壓力,更有其帶來的樂趣和力量——將是巨大的。人們會被裹挾其中,甚至來不及充分考慮運行這些工具的複雜性,或是沙箱機制的可靠性。我擔心的是,隨著能力的急劇提升,我們會習慣並盲目信任模型的現有表現。如果我們沒有建立起完善的——我稱之為“宏觀安全基礎設施”——我們將不知不覺地陷入困局。這也是我認為目前極佳的創業機會。Claire: 你好,我是克萊爾,伯克利分校大二學生,主修認知科學和設計。我想聊回教育的話題。讀高中時,我就看到同學用 ChatGPT 寫論文和作業。現在到了大學,我們也在探討跨學科的 AI 政策和課程。我想回到關於 K-12 階段的討論,當孩子們正處於學習解決問題、寫作和思考的關鍵成長期,如果課堂上引入 AI 會是什麼樣?作為一位新晉父親,你如何預測 AI 將如何改變和塑造這些關鍵階段的教育?Sam Altman: 總的來說,我不建議在幼兒園階段使用電腦。孩子應該在戶外奔跑,玩實體玩具,學習人際互動。所以,我不讚成在幼兒園大量使用 AI,甚至不讚成使用電腦。從發展角度看,我們要警惕技術對低齡兒童的影響。關於社交媒體對青少年的負面影響已有諸多討論,但我預感,很多技術對更年幼孩子的影響可能更為嚴重,卻鮮有人關注。在對此有更深入理解之前,我認為幼兒園的孩子不需要大量接觸 AI。Alan: 你好,我是艾倫,在生物製藥行業工作。生成式 AI 在臨床試驗、文件撰寫和加速審批方面表現驚人。我們正嘗試用它進行藥物設計,特別是化合物設計。但我們遇到了一個難題:三維空間推理。我想知道這是否會有一個臨界點,或者您怎麼看未來的發展?Sam Altman: 我們會解決這個問題的。雖然我不確定具體時間,但這確實是一個非常普遍的需求,我們也知道技術路徑。目前還有許多緊迫領域需要推進,但這一天終會到來。Dan: Sam 你好,我是 Dan。我剛從倫敦一所大學輟學,加入了 Y Combinator 的 W26 批次。我有兩個問題:第一,父母還在催我讀完大學,你認為目前的大學教育是否有時會限制個人發展?第二,你現在還做個人投資嗎?Sam Altman: 我輟學後,父母念叨了十年才放棄讓我回去讀書的念頭。父母就是這樣,他們愛你,想給你他們認為最好的建議。你需要耐心解釋:如果你想回學校,隨時都可以,但世界變了,而且還在不斷變化。每個人都要做自己的決定,而不是盲從社會灌輸給你的既定路線。我個人認為,如果你是一名 AI 開發者,現在可能不是待在大學裡的最佳時機。對於雄心勃勃、主動解決問題的人來說,這是一個千載難逢的特殊時期。記住,學校隨時可以回去讀。你應該告訴父母:這並不意味著上學對很多人來說是錯誤的,也不意味著未來這對你不是正確的選擇,但此刻,你必須抓住機遇。他們最終會理解的。至於第二個問題,我不再做個人投資了。我很懷念那段時光。但我因 OpenAI 分身乏術,而且存在利益衝突——如果我投資的公司成了 OpenAI 的大客戶,情況會變得很尷尬,不做投資反而更省心。Michael: 嘿 Sam,我是 Michael,來自 WorkOS。我們主要做身份驗證。我有個功能請求:允許使用者使用 ChatGPT 帳戶登錄第三方應用。我覺得很多人會喜歡這個。Sam Altman: 我們會做的。Michael: 終於等到了。Sam Altman: 你具體想要什麼功能?是想要使用者自帶 Token 預算,還是自帶 ChatGPT 的記憶,還是全部?Michael: 這正是我想問的。首先當然是 Token 預算。使用者應該能使用自己的帳戶權限訪問模型。但更有趣的是其他方面,比如我的公司能訪問那些 MCP 伺服器?ChatGPT 擁有我的那些記憶?它知道我正在做什麼項目嗎?這涉及很多工作和個人隱私。我很想知道你們怎麼考量這些。Sam Altman: 我們確實在研究如何實現這一點,但這同時也令人擔憂。ChatGPT 確實掌握了大量使用者隱私。即使你告訴密友很多秘密,你也確信他們懂得社交分寸,知道何時分享、與誰分享。我們的模型雖然表現不錯,但還沒完全達到那種微妙的社交判斷力。如果我把 ChatGPT 帳戶連接到很多網站,然後讓它“憑判斷隨意分享”,我會感到非常不安。不過,如果是單純的“自帶 Token 預算”,比如我在其他服務上使用我已經付費的 Pro 模型,這聽起來是個很棒的功能。我們至少會先做到這一點,同時探索如何妥善處理資訊共享。我們必須非常謹慎,不能搞砸。Oleg: 嘿 Sam,我是 Oleg。大家都同意軟體開發作為一門手藝已經發生了巨變,但我看 LinkedIn 上 OpenAI 還在招軟體工程師。我想知道,過去這段時間,你們的面試方式發生了什麼變化?Sam Altman: 我們會繼續招聘軟體工程師,但這是我們第一次——我知道其他創業公司也在思考這個問題——計畫大幅放緩人員增長速度。因為我們認為,利用 AI 可以實現“少人多效”。現在的障礙在於,大多數公司的既有政策還沒準備好接納大量的“AI 同事”。這需要時間調整。企業最不該做的就是瘋狂擴招,然後突然發現有了 AI 並不需要這麼多人,最後不得不進行痛苦的裁員。所以,對我們而言,正確的策略是放慢招聘,但保持精選。我並不認為 OpenAI 最終會變成“零員工”公司。在很長一段時間裡,我們將擁有一群能力倍增的人才,這大概就是未來經濟的形態。至於面試,目前變化不大,但我們正在討論改革。我們的目標是:讓應聘者坐下來,在 10 到 20 分鐘內,完成一項在去年可能需要一個人花兩周才能完成的任務。是的,這是重中之重。我們要考察人們能否利用新工具高效工作。傳統的軟體工程面試早已過時,現在更是離題萬里。這就引出了一個普遍問題:未來的贏家是那些“只有少量員工但擁有大量 AI 同事”的公司,還是“完全由 AI 組成、只有一排排 GPU 而沒有人類”的公司?我非常希望是前者。但如果傳統公司不積極採用 AI,不招聘善用工具的人才,它們最終會被那些完全由 AI 組成、沒有繁文縟節束縛的新型實體淘汰。這對社會來說將是極大的動盪。我們一直在思考如何表達這一觀點,這聽起來像是在推銷自己,但我真心認為:企業迅速、大規模地採用 AI 至關重要。Cole: Sam 你好,我是 Cole,一名創作者兼攝影師。過去一年,AI 徹底改變了我們講故事和表達自我的方式。在創意領域出現了許多有趣的動態,比如用 Sora 作為畫布,將自己置身於各種奇幻場景中。隨著模型不斷進化,你認為人類的創作身份與 AI 輔助創作之間的關係將走向何方?Sam Altman: 我們可以從圖像生成(Image Gen)領域尋找答案,它發展得最早。創意界對它的態度可謂愛恨交織。其中一個有趣的觀察是消費者的反應。研究顯示,如果被告知作品是人類而非 AI 創作的,人們的欣賞度和滿意度會大大提高。我認為這將是未來幾十年的重要趨勢:我們深切關注人類,卻對機器漠不關心。 在所有對 AI 的貶稱中,我最喜歡“Clanker”(原本指發著金屬撞擊聲的機器人/鐵皮人),它非常能喚起情感反應。你可以看到那些由“Clanker”生成的、令人難以置信的精美圖像,但一旦知道真相,許多人的主觀評價就會大打折扣。我在網上看過一個視訊,採訪那些聲稱痛恨 AI 藝術的人……有些人常說:“我肯定能分辨出 AI 生成的圖像,因為它們太糟糕了。” 於是,研究人員做了一個測試:給這些人看 10 張圖片,讓他們按喜愛程度排序。這其中一半完全由人類創作,另一半完全由 AI 生成。結果相當一致,人們往往會將 AI 創作的圖片排在前面。然而,一旦被告知真相,他們的態度就會立刻反轉:“其實我不喜歡它,這並不是我想要的。” 這恰恰揭示了真正的試金石:即你的情感共鳴究竟源於何處。 當我讀完一本我深愛的書,第一件事就是去查閱作者的生平,瞭解他的人生經歷以及創作動機,因為我感到與這個陌生人建立了一種精神聯結,我渴望瞭解他。同樣,如果我讀了一部偉大的小說,最後卻發現是由 AI 寫出來的,我會感到某種失落和沮喪。我認為這不僅是一種深刻的情緒,更將是一個持久的趨勢。不過,如果藝術作品中包含了人類的指導——那怕只有一點點——人們似乎就不會產生那種強烈的牴觸情緒。這種情況由來已久,就像人們依然欣賞數字藝術家使用 Photoshop 創作的作品一樣。基於目前的觀察,我的預測是:創作者本身、他們的人生故事,以及他們在創作過程中所做的編輯、策劃等工作,依然至關重要。 總體而言,我們並不想要完全由 AI 生成的藝術作品——至少從我們在圖像領域的經驗來看是這樣。Dan: 我們還有時間回答兩個問題。Keith Curry: 嗨 Sam,我是 Keith Curry,剛從舊金山州立大學畢業。我的問題關於個性化和記憶功能。首先,您認為這方面未來會如何發展?其次,關於更精細的控制權,比如對記憶進行分組——例如區分“工作身份”和“個人身份”。這樣在不同的提示場景下,您可以更精確地選擇希望 AI 呼叫的內容,您對這一點怎麼看?Sam Altman: 是的,我們將大力投入記憶和個性化功能。這顯然是使用者所需,也能顯著提升工具的可用性。我個人在這方面也經歷了一個觀念轉變的過程,但現在我已經準備好了:讓 ChatGPT 訪問我電腦和網際網路上的所有資訊,讓它變得“全知全能”。這帶來的價值將是巨大的。我不再像以前那樣對此感到顧慮。當然,我真心希望所有 AI 公司——以及整個社會——都能高度重視安全和隱私,因為 AI 的效用實在太大了。AI 將瞭解我生活的方方面面,我不會去阻礙這一點。 雖然出於多種原因,我還沒準備好佩戴那種時刻記錄一切的眼鏡,但我確實準備好說:“嘿,你可以訪問我的電腦,去弄清楚正在發生什麼,來幫助我、理解一切,並完美地呈現我的數字生活。”我很懶,我認為大多數使用者也是如此。所以,合理的呈現方式至關重要。我不想坐在這裡手動分類:這是工作記憶,那是個人記憶,那是別的什麼。我想要的是——這也確實是可能的——AI 能深刻理解我生活中複雜的規則、互動及層級關係,知道在何時使用什麼資訊,在那裡展示什麼內容。我們需要解決這個問題,因為這才是大多數使用者真正想要的。Luan: 嗨 Sam,我是 Luan,一名來自越南的國際學校學生。我的問題是:您認為在 AI 時代,人們應該掌握的最重要的技能是什麼?Sam Altman: 最重要的將是那些“軟技能”。過去那種“去學程式設計”的顯而易見的建議,現在已不再絕對適用。我認為,擁有高度的主動性(Agency)、擅長產生創意、極具韌性,以及對快速變化的世界保持極強的適應能力,這些將比任何具體的技術技能都更重要。 而且,這些都是可以習得的。作為一名風險投資人,曾讓我大感意外的是,人們可以通過一個為期三個月的訓練營式項目,在上述領域取得驚人的進步。這是我認知上的一次重大刷新。所以,我認為這些才是最重要的技能,而且它們並不難學。時間到了嗎?好的。非常感謝大家前來交流。我們非常希望能收到關於“你們希望我們建構什麼”的反饋。設想一下,未來我們將擁有一個比當前模型強大 100 倍、上下文長度增加 100 倍、速度快 100 倍、成本降低 100 倍的模型,它能完美呼叫工具,並具備極高的連貫性。我們會實現這一切。 請告訴我們你們想要什麼。我們會留在這裡,無論你需要 API、某種基礎功能、某種執行階段環境,還是其他任何東西,我們都在為你建構,並且希望能把它做好。再次感謝大家的到來。 (藍血研究)
42歲軟體工程師,因AI裁員!千份簡歷石沉大海,送外賣維生
OpenAI前研究員預言超級智能體將問世,大公司加速AI自主化,2027年AI或能完全自主程式設計,開啟智能爆炸時代,而這一切正悄然改變就業市場,軟體工程師肖恩的遭遇只是冰山一角。AI造成的失業大潮來勢洶洶。OpenAI前研究員預測27年會開發出比人更快、更便宜的超級智能體,全面超越人類。而一位名叫肖恩的軟體工程師的故事,似乎只是這場變革的開始。在紐約州中部高地的荒野裡,42歲的肖恩蜷縮在房車拖車裡。作為失業一年的軟體工程師,他投出了近千份簡歷,卻沒能找到一份工作。每天花6小時送外賣(DoorDash),累得半死,才賺不到200美元。晚上睡前,他最後看一眼信箱,上周投的簡歷(都是能勝任甚至超資格的崗位)杳無音訊。AI,成了倒推他人生多米諾骨牌的第一塊。因AI裁員後,什麼都沒了說起來挺魔幻的,他其實有三套房:紐約州北部大學城一套待翻新的小房子,還有一片偏遠農田,上面有兩間小木屋。以前有工作的時候,養這些房子不難。市區那套房的房貸,靠室友的租金就能cover;木屋的房貸,大部分由租客承擔,剩下的肖恩媽媽那點微薄的政府補助剛好補上。那時,肖恩的年薪15萬美元,除了供房、養車,每年還能剩個四五千,偶爾去露個營,買點股票、搞點投資。這樣的生活簡單卻不失體面,也是他努力奮鬥了20多年才達到的。這20年來,肖恩不斷磨練專業技能,並做長遠規劃和思考。但這兩年半,社會好像突然變了。公司業績明明很好,他和整個開發團隊卻被裁了;投簡歷就像往黑洞裡扔紙,連個響都沒有;技術面試更是折磨。這一切,都和那個才剛剛起步,卻已經滲透到生活方方面面的東西有關——AI。42歲找工作太難,篩簡歷的都是AI這一年,他面試了快10家公司,兩次進了終面,好幾次到二面、三面,但最後都沒下文。為了這些面試,肖恩花了幾十小時準備,結果全是白忙活。他在五六個求職網站上泡了幾百小時,給領英上250個聯絡人一個個發消息求內推了。能拿到面試機會,簡直像中彩票。肖恩懷疑他的簡歷被某個半吊子的AI求職者搜尋服務篩選掉了,因為簡歷中沒有提到足夠多花裡胡哨的AI術語。就算通過了篩選,還有上千名競爭者,包括機器人和同樣被AI擠掉工作的同行。好不容易進了面試,又得面對各種終極挑戰。那些25歲的灣區年輕人,每個人都覺得自己是賈伯斯轉世,一聽42歲,眼神裡全是嫌棄。提到肖恩做過PHP開發,他們直接皺眉頭——好像他現在不會用新工具似的。但肖恩覺得,自己實際上比他們更懂崗位需要的AI技能,但就因為年齡,直接被pass了。2022年,是這一切的開始自學AI花光精力,但沒用有人說:「現在這個年代,你得學最新的AI知識才行。」肖恩做了。過去一年,他每天都會花2-5個小時看AI新聞、論文和播客,不斷思考和反思最新的AI趨勢。並且,還建構了大約10個100%由AI生成的小型程式碼庫,一有新工具就去試,幾乎每天都在用Cursor等AI程式設計工具。有人說:「那你為何不去Substack寫文章,做YouTube博主呢?」在剛失業那會兒,肖恩其實就是這麼幹的。每周,他都會在YouTube發幾個AI相關的視訊。而且為了儘可能省下每一分錢(網費),他甚至會特地跑到超市的休息區去上傳。結果是,粉絲漲了150個,好評收了一些,但工作機會卻一個都沒等來。而且,由於AI發展太快,比如幾個月之前還是前沿的觀點,現在可能就已經過時了。他擔心潛在的僱主會覺得自己跟不上節奏,於是一口氣刪掉了95%的內容。降薪、轉行、開貨車,通通碰壁3年前AI還沒火的時候,肖恩就想從工程師轉到管理崗位。剛失業時,他還挺有信心,結果投了兩個月管理崗,連個面試都沒拿到。簡歷上沒有相關經歷,人家根本不看。沒辦法,肖恩開始投和以前同等等級、但工資更低的崗位,還是沒結果。6個月後,他甚至去投2008年就能幹的WordPress開發崗,工資不到以前的一半,還是石沉大海。實在沒合適的工作,他甚至想過做現場開發。肖恩申請了當地大學的一個現場開發職位,資歷遠遠超過了要求,而且提供的薪水比他2009年的還低,結果卻被拒絕了。唯一能找到的工作只有卡車司機、倉庫工人、超市收銀員,時薪18美元。絕望之下,他甚至開始研究正規大學的工程經理證書項目,說不定能讓自己的簡歷好看一點,然後借此撈到一個面試的機會。然而,這些收費高達3000到8000美元的課程,主要內容竟然是看YouTube視訊。甚至在結業之後,還不保證能找到工作……肖恩沒錢,所以就此作罷。他考慮過轉行,從事一份至少幾年內不受AI影響的工作,比如去開起重機或者當無人機測量員。但做這些工作前,都得先花7000-15000美元參加培訓,入職後的時薪也只有25美元。肖恩根本拿不出這筆錢,而且這點工資也並不夠他花的。現在他只好硬著頭皮,貸了幾千美元搞了個高壓清洗公司。至少,這比去超市打工掙得多,還能自己安排時間。靠租房和送外賣續命為了還上高額的房貸,他把自己在市區的房子租給了一個長租客,才勉強cover住。肖恩本來想翻新後整套出租賺點錢,但沒錢了,只能先租一半。要是有錢完成翻新,就能多賺點租金。小木屋則掛在Airbnb上出租,雖然評價都是五星,但地方太偏,冬天又冷,只有一兩個月旺季能賺點錢。肖恩還在eBay上賣閒置,舊電腦賣300美元,舊衣服賣20美元,能賺一點是一點。本來想在農業區擺個攤位賣農產品,但連搭攤位、買裝置的錢都沒有,只好再次作罷。今年冬天,肖恩開始送外賣。註冊的時候,因為姓氏和系統不相容,花了50小時和馬來西亞、印度的客服溝通,才註冊上DoorDash,其他平台到現在還沒搞定。現在只要有力氣,他就去送外賣,有時時薪比超市高,但偶爾也會虧。剛失業時,肖恩還申請了失業救濟。紐約州的失業系統簡直是最爛的官僚機構,一堆破手續,每月不到2000美元,還只給6個月,根本不夠花。後來他們知道肖恩在做Airbnb(其實肖恩早就告知過),直接發了一封律師函,逼他還錢。這要是執行了,肖恩的房子全得被收走,直接原地破產。最終他不得不通過上訴才解決。6個月後,肖恩收到一封郵件說「救濟結束」,啥都不管了。沒有進一步的推薦資源,沒有社區建議,甚至連一句祝你好運都沒有。總有人說:「你有三套房,賣了不就有錢了?」那有那麼簡單:母親殘疾,沒地方去。申請政府住房得排兩年隊,住在肖恩這裡,他還能照顧一下。房子沒翻新,賣了就虧。而且因為沒有工作,沒法申請新房貸,賣了房還要交20%的稅,根本不划算。等以後翻新好了,賣了還能換套更好的房子,現在賣了就真的血本無歸了。就算賣了,扣掉房租,每月也只能省幾百塊,卻把唯一的資產搞沒了,以後可能再也買不起房了。近千份簡歷無音訊寫完這篇文章,肖恩還得繼續把簡歷投給那些發了也白髮的AI機器人,爭取把技術崗申請的數量刷到900到920份。然後,再去搞搞自己正在燒錢的清洗生意,靠著不知道怎麼還的貸款。之後可能還得跑幾個小時外賣,讓自己累到身心俱疲。因為以前得過抑鬱症,肖恩知道不能消極,所以每天都強迫自己樂觀一點,但有時候真的很難。一個幹了20年的軟體工程師,怎麼短短一兩年就被AI逼到這一步。肖恩知道他不是一個人,這只是個開始,AI帶來的失業潮遲早會影響所有人。現在大家還覺得這是未來的事,其實它已經發生了。肖恩生氣,不是因為丟了工作,而是因為這個社會告訴我們:不工作就沒法活。既然AI能幹活,為什麼不能把它創造的價值分給大家?超級AI智能體來襲大公司在試著擴大強化學習的規模,讓AI更加自主。OpenAI前研究員Daniel Kokotajlo預測到2027年初,AI可以在無人干預的情況下,完全自主地長時間編寫程式碼,且程式設計能力足夠好。但與人類相比,AI的資料效率還不夠高,缺乏研究品位,以及與現實世界互動的能力。如果AI擅長程式碼,就可以加快AI的開發處理程序,加速演算法進步,甚至出現智能爆炸。很快,AI會接管一切,徹底改變經濟。 (新智元)