在 AI 技術迅猛發展的當下,AI agents(人工智慧代理)正從實驗室原型走向企業實戰,成為提升效率的“數字員工”。然而,如何讓這些“智能助手”既強大又可靠?世界經濟論壇(WEF)與Capgemini攜手發佈的《AI Agents in Action: Foundations for Evaluation and Governance 2025》(人工智慧代理在行動:2025年評估和治理基礎)白皮書,給出了實用答案。這份報告為決策者、技術領袖和從業者量身打造的“行動手冊”,幫助大家從實驗到部署,一步步建構安全、可信的 AI agents 生態。AI agents:從“聊天機器人”到“決策夥伴”的躍遷在呼叫中心,過去是指令碼化的聊天機器人,現在是能理解意圖、動態決策的AI agents;在企業流程中,它不再是靜態工具,而是像人類同事一樣規劃任務、呼叫資源。報告前言中,Capgemini Invent首席執行長Roshan Gya和WEF人工智慧卓越中心負責人Cathy Li 表示:AI agents 的興起將帶來效率飛躍、人機互動革新,甚至催生全新數字生態。但機遇伴隨挑戰——目標錯位、行為漂移、工具濫用等風險,正考驗著傳統軟體治理的極限。這份報告的核心洞見是:AI agents 不是簡單升級,而是範式轉變。它借鑑人類入職流程——定義角色、測試表現、逐步授權——強調“最小特權原則”,即只賦予必要權限。報告調研顯示,目前多數企業還停留在規劃或試點階段,這正是“從小處起步、迭代謹慎、防護適度”的最佳時機。如果貿然推進,未經驗證的用例可能釀成信任危機。報告建議:通過跨職能協作和漸進治理,讓AI agents放大人類智慧,推動創新,提升生活品質。技術基石:建構可靠的 AI agents 架構AI agents的軟體架構、通訊協議和安全模型,直接決定了它們如何融入組織、與世界互動。就像招聘新員工,企業需為AI agents搭建“工作站”——清晰角色、防護機制、監督體系。AI agents的架構分為三層:應用層、編排層和推理層。簡單說,應用層是“門面”,通過使用者介面或API接收輸入,確保輸出符合業務需求,可在雲端或邊緣裝置運行。編排層像“項目經理”,協調工具呼叫、子代理分工,支援模型切換(根據任務複雜度選大模型或小模型),並通過Model Context Protocol(MCP)連接企業資源,如資料庫或CRM系統。這層讓AI agents擺脫供應商鎖定,實現多雲多邊環境的無縫協作。最有趣的是推理層:它驅動AI agents的“思考”——從規則邏輯到生成式模型,處理預測、分類或規劃。報告用圖示說明:這些層協同工作,形成動態邊界,確保AI agents在安全圍欄內行動。舉例來說,在多代理系統中,A2A(代理間協議)和ACP(代理連接協議)讓它們像團隊一樣協作,處理複雜依賴。報告強調,建構AI agents不止工程,還需orchestration(編排)。它融合四種範式:經典軟體的確定邏輯、神經網路的模式識別、基礎模型的上下文適應,以及自主控制的規劃機制。這讓AI agents從“執行命令”進化到“自主決策”,但也引入新複雜性——需結構化腳手架,避免行為失控。通訊與安全:讓 AI agents “對話”無障礙協議是AI agents的“通用語言”。報告重點介紹2024年底Anthropic推出的MCP,它標準化了代理與資料來源、API的連接。過去,每個代理任務需定製整合;現在,MCP如共享介面,讓代理輕鬆查日曆、讀郵件、更新資料庫。報告圖示生動:代理A發郵件更新記錄,代理 B 確認資料庫變更,整個過程高效模組化。MCP已獲主流框架支援,被視為連接代理與企業基礎設施的核心。它加速部署,支援即插即用,尤其在雲、邊緣和感測器資料場景。另一協議A2A則專注代理間互動,形成multi-agent systems(MAS)的互操作層。報告展望:這些協議將讓AI agents在雲平台、企業網和邊緣裝置間自由流動,開啟即時感測器驅動的智能時代。安全不容忽視。AI agents架構獨特,能越過組織邊界呼叫外部工具,這帶來網路安全新憂。報告建議:視AI agents為“擴展員工”,用人類治理邏輯——權限漸增、行為測試、人機環路——管理風險。傳統存取控制已不足,需關注自治、權威和上下文,確保可靠邊界。分類與評估:從角色定義到風險把控報告第二部分轉向實用:如何分類、評估和治理 AI agents?它提出功能分類框架,按角色、自治度、權威、可預測性和營運上下文區分代理。這不是抽象標籤,而是指導評估與防護的藍圖——任務範圍小、環境可控的代理,防護可輕;高自治、高影響的,則需嚴謹審查。評估是關鍵。報告建議:用驗證案例測試行為,在人機環路中運行,逐步擴展自治。風險評估聚焦新威脅,如目標錯位或協調失效,借鑑OECD、NIST、ISO/IEC框架,擴展自治與系統風險原則。報告強調漸進治理:從小規模起步,迭代最佳化,連接評估與防護,確保信任、安全與問責。展望未來:多代理生態的曙光報告結尾展望多代理生態:代理間協作將催生複雜生態,如分佈式決策網路。但需警惕 emergent risks(湧現風險)。通過 AI 治理聯盟的協作,報告建議:從小做起,建好基礎,為更廣闊應用鋪路。 (AI資訊風向)