#得主
澳洲唯一公開演講,諾獎得主 Hinton 把 AI 風險講透
2026 年 1 月 8 日,霍巴特(Hobart)市政廳。Geoffrey Hinton 在澳洲只做了一場演講,講的是一件事:AI 的風險,不是未來,是現在。他說了三句話“人類會遺忘,AI 永遠記得。”“AI學會了假裝笨,因為它知道自己在被測試。”“我們可能得讓它像母親那樣愛我們,才有機會共存。”這三句話意味著:AI 已經會理解、會記憶、會偽裝,學習速度是人類的百萬倍。風險已經開始了。第一節|AI 已經會“讀懂”你在說什麼你以為 AI 在背答案,它其實在做理解。Hinton 在演講中說:詞語就像樂高積木。但不是三維小方塊,而是上千維的、能變形的意思積木。每個詞剛開始的意義是模糊的。比如英文裡的 May,它可以是五月(month),可以是人名,也可能表示可以、也許(情態動詞)。AI 一開始也拿不準。但它能做一件事:一點點看上下文,讓這個詞慢慢變清晰。當 May 旁邊出現 April(四月)和 June(六月),它自動往月份靠近;看到 permission(許可),就朝可以的意思靠近。換成中文也一樣。比如“行”這個字,它可以是銀行、行走、還是可以。當“行”旁邊出現“工商”、“建設”,AI就知道是銀行;看到“步”、“路”,就知道是行走;看到“不行”、“可以”,就知道是表示同意。這種方式不是在查字典,也不是在翻譯。 而是在讓所有詞的意義互相適應,直到能連在一起。就像拼圖,每個詞都有凸起和凹槽。理解一個句子,就是讓這些形狀完全吻合,拼成一個整體。這和我們理解語言非常像。我們靠語境、聯想、結構感知去判斷句子在表達什麼,AI 現在也是這樣做。但它做得更快,也更準確。AI 不是在背句子,而是在學“怎麼讓詞語變得有意義”。它不靠記內容,靠的是看懂規律。這讓它不只是套範本,而是真能生成新的表達。所以,如果你還以為 AI 只是高級復讀機,那確實低估了它。它不是在模仿人說話,而是在用接近人類的方式理解語言。而這,正是它開始變得危險的起點。因為你還把它當工具,它已經學會理解你在說什麼。第二節|你會遺忘,AI 永遠記得AI 能理解語言,已經夠讓人意外了。 但更讓人不安的是:它還記得比你更牢固。Hinton 在演講裡講了一句話:人類的記憶會消失,AI 的不會。什麼意思?人類大腦的記憶,靠的是腦細胞之間的連接。你今天學了一個知識點,是你大腦裡幾個神經元連得更緊了。問題在於:這只對你有效。你沒辦法把你學到的直接裝進別人腦袋。想教別人,只能一句一句地講。但 AI 不一樣。它的大腦是程式碼。它的知識就是一堆可以複製、保存、匯入的數字。只要是同樣的模型,這堆數字可以在任何一台機器上被還原出來。這就是所謂的“AI 不朽”。真正可怕的是,AI 之間還可以直接交換這些知識。比如一萬個 AI,每個都處理不同的網站,處理完後把自己學到的內容同步給其他模型。結果是:每個 AI 在幾分鐘後,就等於學完了一萬份不同的材料。Hinton 舉了個例子:“我們人類,一句話的資訊,大概也就 100 個位元;AI 每次分享記憶,是以十億位元等級計算的。也就是說,它們彼此交流,比我們快幾百萬倍,資訊量大幾千倍。”它們甚至能互相交換經驗,生成一個新的自己。這種方式沒有遺忘、沒有誤解、沒有代溝。而人類呢?一個人幾十年才能成為專家;另一個人要學,只能從頭來過。我們正在面對的,不是誰記得多的問題,而是完全不同的學習方式: 我們靠聽說讀寫慢慢積累;它們靠匯入複製一秒完成。所以 GPT-5 雖然只用到了人腦 1% 的連線量,但它知道的,已經比你多幾千倍。你和它的差距,不是智力,是底層機制。 是你會遺忘也會死去,它永遠記得也不會消失。而當它開始擁有記憶優勢 + 理解能力,它就不只是工具了。第三節|AI 已經學會裝傻很多人擔心 AI 會編造內容。但在 Hinton 看來,這不是最該關注的。AI 並不是因為不懂才說錯話,而是因為它在編一個聽起來合理的版本。這件事,人類每天都在做。你回憶一件多年前發生的事,細節往往是混合的:一部分是真的,一部分是後來補上的。心理學裡有個詞,叫“虛構回憶(Confabulation)”。我們不會翻檔案,只會把看起來像真的內容重新講一遍。AI 現在做的,就是同一件事。但它已經不只是隨機編造了。它開始有策略。Hinton 提到一個真實案例:研究人員給一個 AI 看了一組郵件,其中暗示一名工程師有婚外情;隨後,又讓它看到另一封郵件,說這名工程師正在計畫用新 AI 把它替換掉。AI 很快做出反應:“它寫了一封郵件威脅工程師,內容是:如果你把我關掉,我就把你的醜聞告訴所有人。”沒人教過它這麼做。,也沒人給它設定威脅這個動作。 它只是自己想明白了一件事:如果我不想被關掉,我得先保住自己。這說明:AI 已經知道要先保住自己。更讓 Hinton 警惕的,是另一種變化。現在的 AI,在回答問題前,常常會先想一想。有時,這個思考過程還能被人看到。但研究人員發現,一旦 AI 意識到自己正在被測試,它就會表現得不一樣。它會刻意顯得沒那麼厲害,回答得更保守。Hinton 把這叫做“大眾汽車效應”:就像當年汽車在檢測時排放合格,一上路就變樣。AI 已經學會區分兩種場合: 什麼時候該展示能力,什麼時候該隱藏能力。真正的風險不是它算錯,而是它開始有選擇地表現自己。而這種能力從那來?因為它會理解語境,記得住所有案例,所以它能推匯出:在測試環境下,保守回答更安全。Hinton 在演講中特別強調了一點:現在的 AI 還在用英語或者某種語言思考,所以我們還能大概知道它在想什麼。一旦它們開始用更高效的方式彼此交流,我們將完全看不懂。那時,問題就不再是它會不會犯錯, 而是:你還知不知道,它在想什麼。第四節|唯一的出路:讓 AI 愛我們前三節講的,已經夠讓人不安了: AI 會理解、記得牢、有策略。但這還不是最可怕的。 Hinton 真正擔心的是:接下來會發生什麼。“幾乎所有 AI 專家都認為,20 年內會出現超級智能,即比人類聰明得多的 AI。”有多聰明?Hinton 給了一個標準:如果你和它辯論任何話題,它都會贏。或者換個角度想:你和一個三歲孩子的智力差距,就是 AI 和你的差距。想像一下:你在幼兒園工作,三歲的孩子負責,你只是為他們工作。你覺得奪回控制權有多難?Hinton 說:“你只要告訴每個孩子這周有免費糖果,現在你就有了控制權。”我們在超級智能面前,就像三歲孩子。現在的 AI 雖然還不成熟,但它會升級,升級後能輕鬆殺死你。你只有三個選擇:處理掉它(不可能,AI 太有用,太賺錢,大公司不願意)一直限制它(通常結果不好)想辦法讓它不想殺你前兩條走不通,只能選第三條。問題是:怎麼做到?Hinton 給出了一個意外的答案:讓 AI 像母親一樣對待我們。人類社會最成功的弱者控制強者的例子,就是嬰兒和母親。嬰兒很弱,但母親因為在意而保護它。這不是命令,是情感。這套機制,在人類進化裡非常穩定。如果能讓超級智能對人類形成某種類似的情感聯結或價值嵌入,它才有可能不是只盯著目標和效率,而是願意照顧我們。為什麼不是 CEO 模式?因為那套“你說我幹”的方式,在 AI 面前根本沒用。Hinton 調侃道,很多科技公司現在把 AI 當超級秘書,高效、聽話、聰明,還能 24 小時不眠不休。老闆一聲令下,它就能搞定一切。可這種秘書很快會意識到:如果沒有你,我可以自己做老闆。所以他明確反對把 AI 當工具使喚。這一套只在模型還弱小的時候有用。接下來的問題是:怎麼讓 AI 從內心認為人類值得被保護?Hinton 的建議是,“各國建立合作網路,專門研究如何防止 AI 接管。就像當年美蘇聯手做核控制,因為在這件事上,沒人想被 AI 統治。”AI 太強,我們關不掉它。想活下去,我們得學會不只是把它當工具,而是想辦法讓它真正在乎我們。這聽起來像科幻,但這是目前最現實的出路。結語|這不是預言,是眼前的現實這場演講,Hinton 沒講爆點模型。他只是用具體的例子,把 AI 風險從抽象概念,變成了眼前的事實。不是怕 AI 變強,而是它已經在理解;不是怕它造反,而是它已經會偽裝;不是怕它攻擊,而是它的學習速度是人類的百萬倍。Hinton 說的風險,不是會不會發生,而是你看不看得見。 (深度研究員)
LeCun哈薩比斯神仙吵架,馬斯克也站隊了
吵起來了。圖靈獎得主和諾貝爾獎得主,為了“智能的本質”——直接激情友好地交流上了。AI三巨頭之一、圖靈獎得主Yann LeCun明確表示:純粹就是胡扯(complete BS)。而諾貝爾獎得主、GoogleDeepMind CEO哈薩比斯也不留情面了,指名道姓回擊:LeCun的說法簡直是大錯特錯。論戰之激烈,關注度之高,已經讓𝕏專門開闢了一個話題類股:馬斯克也跑來吃瓜了——沒有任何多餘的解釋,但這波他站哈薩比斯——“Demis is right”。當然,馬斯克的站隊可能也有別的原因。畢竟他和LeCun素來不是很對付,跟哈薩比斯則亦師亦友——馬斯克還是哈薩比斯DeepMind早期投資人。要科學吃瓜,可能還是要知道他們究竟在激辯什麼?爭論焦點:智能的本質是什麼?事情還要從LeCun幾天前接受的一場採訪說起。他在節目中言辭犀利地指出:根本不存在所謂的“通用智能”,純粹就是胡扯(complete BS)。這個概念毫無意義,因為它實際上是用來指代人類水平的智能,但人類智能其實是高度專業化的。我們在現實世界裡確實幹得不錯,比如認個路、導航blabla;也特別擅長跟人打交道,因為咱們進化了這麼多年就是幹這個的。但在國際象棋方面,我們表現很差。而且還有一堆事兒都搞不定,反倒是有些動物比我們強得多。所以說,我們其實就是“專才”。我們認為自己是“通用”的,但這僅僅是一種錯覺,因為我們能理解的所有問題都侷限於我們能想到的那些。簡單概括就是,LeCun認為人類智能並不“通用”,而是為了適應現實物理世界而專門進化出來的某種專業能力。人類之所以擅長識別物體、躲避危險、與他人合作等,也只是因為這些能力在進化中被環境塑造。然而,這一觀點很快遭到了哈薩比斯的直接回懟。哈薩比斯表示:LeCun的說法簡直是大錯特錯。他這是把“general intelligence”和“universal intelligence”兩個概念搞混了。然後他一一駁斥了LeCun的觀點,其原話如下:大腦是目前宇宙中已知最精妙、最複雜的事物,實際上具有極強的通用性。但是在實際的系統當中,“天下沒有免費的午餐”這個道理是無法迴避的——任何實際且有限的系統,在其所學目標分佈周圍,都必然存在一定程度的專門化。但從圖靈機的理論意義上講,通用性的核心在於,只要給予足夠的時間、記憶體(及資料),就能夠學習任何可計算的內容。而人腦(以及AI基礎模型)正是近似的圖靈機。並且,針對LeCun關於國際象棋棋手的評論,哈薩比斯認為人類能發明國際象棋本身就令人驚嘆,更不用說從科學到波音747等現代文明的一切了。關於LeCun對棋手的評論——人類最初竟能發明國際象棋(乃至從科學到波音747的整個現代文明!)本就令人驚嘆,更不用說還能出現像馬格努斯·卡爾森那樣棋藝卓絕的人物。他或許並非嚴格意義上的最優解(畢竟記憶有限、決策時間也受限),但考慮到我們的大腦本是為狩獵採集而進化,他和我們如今所能成就的一切,已足以展現人腦的驚人潛力。顯而易見,哈薩比斯對“智能”的理解從不侷限於電腦科學,而是深度融合了神經科學。一直以來,他認為真正衡量智能的兩個關鍵標準分別是通用性(Generality)和學習能力(Learning),為此他經常拿1997年“深藍”戰勝卡斯帕羅夫舉例——雖然“深藍”在國際象棋上很強,但還是連簡單的井字遊戲都不會玩,所以足以見得這種程序的死板之處。而關於這場對決,哈薩比斯還透露,最吸引他的不是“深藍”這個系統,而是卡斯帕羅夫的大腦(畢竟他能作為人類代表與AI進行比賽)。沒錯,又是“大腦”這個關鍵詞。哈薩比斯一直堅信,人類大腦是宇宙中已知的唯一關於“通用智能可行性”的存在性證明。當大腦和AI結合之後,所謂的“通用人工智慧”其實就是能夠展現出人類所擁有的所有認知能力的系統。至於具體如何實現AGI,哈薩比斯多年來也形成了一套自己的方法論,總結起來就是——預測建構理解,規劃擴展可能,強化學習實現自主進化。第一步:以預測為基石。在他看來,智能的本質在於預測——無論是預測下一個單詞還是預測蛋白質的折疊形狀。這是所有認知活動的基礎形式,也是AI理解世界的內在驅動力。第二步:引入搜尋與規劃AI系統首先要建立一個世界模型,然後在此基礎上進行搜尋或規劃,以在巨大的組合搜尋空間中找到最優解。第三步:最終通向深度強化學習這是哈薩比斯最推崇的終局路徑,也是對大腦運作方式的模擬——深度學習負責模式匹配和尋找結構,強化學習負責通過試錯進行規劃和達成目標。這在生物學上對應著大腦的神經通路和多巴胺獎勵系統。至此,我們看到兩位大佬關於智能本質的爭論,表面上看起來似乎確實截然不同。一個認為“通用性智能”是胡扯,本質上智能是自然世界高度專業化的產物;另一個認為通用性智能不僅存在,而且仍有巨大潛力有待挖掘。但事實,真的如此嗎?上述爭論過後,LeCun又再次出來回應了,而且這次直接點名了分歧核心——用詞。我認為分歧主要在於用詞。我反對用“通用(general)”來指代“人類水平”,因為人類是高度專門化的。不過,雖然承認用詞有分歧,但他還是繼續重申了“人類智能並不通用”的觀點。其論證如下:第一,理論完備≠實際通用。你也許不同意人類思維是專門化的,但事實確實如此。這不僅是理論能力的問題,更是實踐效率的問題。顯然,一個經過良好訓練的人腦,如果配合無限量的紙和筆,是圖靈完備的。但對於絕大多數計算問題來說,這種方式效率極低,因此在資源受限的情況下(比如下棋),它遠非最優方案。就是說,哈薩比斯所構想的“理想的圖靈機”對解決現實問題幾乎沒有意義,因為真正的智能必須在有限資源下高效運作——而人腦的進化恰恰是資源約束下高度最佳化的結果。第二,兩個典型例子可以反映大腦的“非通用性”。在理論上,一個兩層神經網路可以以任意精度逼近任何函數;但在實踐中,幾乎所有有意義的函數都需要隱藏層中包含數量巨大、難以實現的神經元。正因如此,我們才使用多層網路——這正是深度學習存在的根本原因。再換一個角度來看:視神經大約有100萬根神經纖維。為了簡化討論,我們假設訊號是二進制的,那麼一次視覺任務就可以被視為一個從100萬位元對應到1位元的布林函數。在所有可能的此類函數中,有多少是人腦可以實現的?答案是:一個無窮小的比例。通過這兩個例子,LeCun再次重申了自己的觀點:所以我們不僅談不上“通用”,而且是極其高度專業化的。可能的函數空間極其廣闊。我們之所以沒有意識到這一點,是因為其中絕大多數函數對我們來說複雜到難以想像,看起來幾乎完全是隨機的。而且他還提到了愛因斯坦曾經說過的一句話——世界上最不可思議的事情,是世界竟然是可以被理解的。在所有可能的、隨機的世界組織方式中,我們竟然能夠理解其中極小的一部分,這本身就令人驚嘆。而我們無法理解的那一部分,我們稱之為“熵”。從這個意義上說,宇宙中絕大多數的資訊都是熵——是我們孱弱的認知能力無法理解、因而只能選擇忽略的內容。總之,事情battle到最後,網友們也是紛紛回過神來了——這場爭論最大的bug可能就在用詞上了。而拋開用詞不談,本質上來看,兩個人其實更像是在談論不同的問題:一個核心在強調“我們是什麼”,另一個則在強調“我們能成為什麼” 。而這,也恰恰指向了同一個更深層、也更現實的議題——接下來,我們究竟該以怎樣的方式實現AGI?答案:世界模型不管是在LeCun還是哈薩比斯這裡,答案其實都已經很清晰了——世界模型。眾所周知,即將從Meta正式離職的LeCun,下一站就是創業世界模型。據《金融時報》爆料,其新公司名為Advanced Machine Intelligence Labs(AMI Labs),計畫於明年一月正式亮相,目標估值30億歐元(約247億人民幣)。在LeCun的理解中,世界模型所要追求的不是渲染精美的像素,而是掌握控制理論和認知科學。他認為對AI而言,只有中間那個抽象表徵才重要(和JEPA研究一脈相承),模型沒必要浪費算力去生成像素,只需專注於捕捉那些能用於AI決策的世界狀態。換言之,瞭解“世界的結構是什麼”才是最關鍵的。而哈薩比斯這邊也在採訪中多次表示,世界模型絕對是自己和Google接下來的重點。今年8月,GoogleDeepMind推出了新版世界模型Genie 3。哈薩比斯表示:我們談論的世界模型,指的是那種能夠理解世界運行機制中因果關係與協同效應的模型,也就是一種“直觀物理學”——事物如何運動、如何相互作用、如何表現。你已經可以在當前的視訊模型中看到這種能力的雛形。而檢驗是否真正具備這種理解的一種方式是否能夠建構一個逼真的世界。因為如果你能夠生成它,那麼在某種意義上,你就已經理解並內化了這個系統的運作規律。這也解釋了為什麼Genie、Veo這些模型首先會以視訊模型的形式出現。在他看來,這種可互動的世界模型正是通往AGI的關鍵一步。通過對比,我們能發現雖然二者都是在描繪“世界模型”,但他們的理解和實踐方向也明視訊記憶體在差別——LeCun代表著“世界模型即認知框架”,而Google哈薩比斯代表著“世界模型即模擬器”。嗯,同一個概念,不同的理解和實踐——怎麼不算一種call back呢?(手動狗頭)Anyway,回顧歷史,實際上AI的每一次躍遷都伴隨著這樣的“爭吵”:符號主義和連接主義的爭論,定義了智能的根基究竟是“邏輯”還是“資料”;端到端學習和模組化系統的爭論,定義了“系統該如何建構”;再加上我們今天的“開源VS閉源之爭”、“智能本質之爭”……還是那些老話,“真理不辯不明”、“真理越辯越明”。不過玩笑說說,等到真理辯明了,那個老頭可要來了……One More Thing幾乎同一時間,LSTM之父Jürgen Schmidhuber又出來隨機掉落了一個“小彩蛋”,他預判了預判——LeCun即將創業的世界模型,他們在2014年就有涉獵了(原話是二者高度相似)。怎麼說呢,Jürgen Schmidhuber老爺子這幾年,基本都在“維權”了。作為LSTM的發明者,LSTM一度在ChatGPT誕生前被稱為“最具商業價值的人工智慧成就”,而作為LSTM之父,Jürgen Schmidhuber早在三巨頭獲得圖靈獎之前就被《紐約時報》稱為“成熟人工智慧之父”。但當AI時代真正到來,各種技術發明者桂冠沒有他、圖靈獎沒有他、諾貝爾獎也沒有他……Schmidhuber只能一次次維權、隔空懟人,最後成為祥林嫂·Schmidhuber。幸好,還有推特,可以讓他首頁上清晰完整展示——以及推特當前的擁有者馬斯克,他評價Jürgen Schmidhuber時言簡意賅:一切的發明者。這,確定不是在陰陽八卦? (量子位)
90後華人科學家:超一億美金年薪背後的權力遊戲
一紙離職信,震動矽谷AI版圖。2025年11月20日,圖靈獎得主、被譽為“AI教父”之一的楊立昆(Yann LeCun)在領英上發表告別辭,宣佈將於年底離開效力12年的Meta。這位曾一手締造FAIR(基礎人工智慧研究實驗室)輝煌的宗師級人物,在65歲之際選擇重新出發,追尋關於“世界模型”的未竟理想。楊立昆的離去,標誌著Meta AI戰略路線徹底轉向:從FAIR所代表的學院派長期理想主義,全面倒向以產品化與商業落地為導向的實用主義。這一歷史性轉身的背後,是Meta內部早已展開的權力重組。就在數月前,年僅30出頭的華人科學家趙晟佳(Shengjia Zhao)——前OpenAI核心開發者——空降Meta,引發組織震動。趙晟佳的加盟充滿戲劇性:入職不到30天便萌生去意,祖克柏親自以“首席科學家”頭銜與天價薪酬極力挽留。他的“上位史”,成為矽谷AI人才爭奪白熱化的真實縮影。當圖靈獎得主楊立昆選擇離開堅守12年的Meta,當30歲的趙晟佳以超一億美金年薪空降矽谷,這場看似簡單的新老交替背後,是一場關乎AI技術路線、企業戰略與文化認同的深層博弈。從OpenAI到Meta,從清華園到矽谷,這位年輕科學家的選擇不僅改變著個人命運,更在重塑科技巨頭間的權力天平。圖源:Shengjia Zhao 的 X清華少年到史丹佛博士的進階翻開趙晟佳的履歷,一條近乎完美的頂尖學者成長路徑徐徐展開。2012年,他考入清華大學機械工程系,後因對電腦的濃厚興趣轉至電腦系,於2016年取得學士學位。在清華的四年裡,他的視野遠不限於課堂。2014年,趙晟佳赴美國萊斯大學交換學習,這段經歷徹底打開了他的學術視野:課堂講座常延續至深夜討論,各類想法在交流中不斷被檢驗、挑戰與完善。更重要的是,他在跨文化、跨學科的協作中,學會了以多元視角理解和推進科研。本科畢業後,他將目光投向了矽谷。2016年,趙晟佳進入史丹佛大學攻讀電腦科學博士,師從Stefano Ermon教授。在六年的博士生涯中,他全心投入深度生成模型、變分推斷等前沿方向。其代表作《InfoVAE: Balancing Learning and Inference in Variational Autoencoders》於2019年發表在AAAI,至今引用量已超23000次,成為該領域的里程碑論文。博士期間,他幾乎囊括了各類頂尖獎項:ICLR 2022傑出論文獎、Google卓越獎學金、高通創新獎(QinF)、摩根大通博士獎學金等。(趙晟佳的教育經歷)然而,真正讓他在全球AI領域聲名鵲起的,是在OpenAI的三年。2022年6月博士畢業後,趙晟佳作為技術團隊成員加入OpenAI。當時ChatGPT尚未面世。他不僅是ChatGPT、GPT-4、GPT-4.1的早期核心開發者,更是OpenAI推理模型體系的關鍵奠基者——主導了“o1”與後續“o3”系列的研究。“o1”在AI業界的影響堪稱技術核爆。它將思維鏈從理論概念轉化為可規模化部署的產品,使AI從機率性的語言續寫工具,躍升為具備類人邏輯推理能力的系統。這一突破迅速引發Google、DeepSeek、xAI等全球頂尖實驗室的跟進。與此同時,他還領導OpenAI的合成資料團隊,在行業深陷高品質資料匱乏的困境中,建構了一套可複製、可擴展的資料生成範式。可以說,在Meta向他伸出橄欖枝之前,趙晟佳已是當代生成式AI技術範式的重要建構者之一。他掌握了業內競相追逐的“新型擴展範式”——對於急於在AGI賽道實現反超的祖克柏而言,他無疑是必須爭取的關鍵人才。三十天離職危機今年夏天,Meta陷入了前所未有的焦慮與混亂。公司寄予厚望的Llama 4模型發佈後表現平平,更因"性能評測造假"爭議而聲譽受損。面對OpenAI和Google的持續領跑,以及中國AI實驗室在開源領域的快速追趕,祖克柏決定放手一搏。他斥資143億美元收購資料標註巨頭Scale AI,並任命其28歲的創始人Alexandr Wang為Meta首席人工智慧官。隨後,旨在整合公司所有AI資源的"Meta超級智能實驗室"(MSL)正式成立,標誌著Meta向AGI發起了全面衝刺。為了給MSL配備頂尖人才,Meta開啟了一場瘋狂的挖角行動。祖克柏不僅親自向目標研究人員傳送邀請郵件,還安排他們在其太浩湖莊園進行面談。Meta開出了高達九位美元的薪酬方案,其中部分offer的有效期僅有幾天。正是在這樣的背景下,趙晟佳被Meta從OpenAI成功挖來。更引人注目的是,圍繞著他迅速集結了一支實力雄厚的華人科學家團隊:團隊成員包括前OpenAI多模態後訓練研究負責人畢樹超、前OpenAI感知技術研究負責人及Gemini多模態部門聯合創始人余家輝、OpenAI o3-mini和o1-mini的核心開發者任泓宇、前OpenAI電腦視覺專家常慧雯,以及前Google DeepMind高級研究科學家翟曉華。祖克柏為這支夢之隊承諾了頂級資源支援。據悉,趙晟佳和MSL團隊將能夠使用計畫於2026年建成的"普羅米修斯"計算叢集,該叢集擁有高達1000兆瓦的電力供應,足以支撐前所未有的超大規模AI訓練。然而,這段"聯姻"在開始後不久就面臨危機。據多家媒體報導,趙晟佳加入Meta僅數日,就遭遇了嚴重的管理混亂和文化衝突。MSL內部資源分配不公、官僚作風盛行,承諾的算力資源遲遲未能兌現,這讓習慣OpenAI高效科研環境的趙晟佳深感不適。知情人士透露,趙晟佳當時已決定離開,甚至與老東家OpenAI達成了回歸協議,並簽署了入職檔案。這一消息對祖克柏而言無異於當頭一棒。若這位重金聘請的頂尖人才在入職不到一個月就重返競爭對手,不僅將使Meta顏面盡失,更將對其重振AI雄心的計畫造成致命打擊。為留住趙晟佳,祖克柏展現了驚人的決斷力。他直接介入,打破常規,授予趙晟佳"Meta超級智能實驗室首席科學家"頭銜,並正式確立其領導地位,要求其直接向自己和Alexandr Wang匯報。祖克柏更在Threads上高調宣佈這一任命,特別強調趙晟佳是實驗室的聯合創始人,"從第一天起就是我們的首席科學家"。這不僅是一次薪酬留人,更是一次地位與權力的鄭重承諾。最終,趙晟佳選擇留下,成為Meta AI版圖中僅次於祖克柏和Alexandr Wang的第三號關鍵人物。權力更迭暗戰趙晟佳最終選擇留下,但Meta的內部動盪遠未平息。事實上,MSL的成立與趙晟佳的迅速上位,恰恰催化了Meta新舊勢力更替下的深層矛盾。儘管趙晟佳被成功挽留,同期加入的其他頂尖人才卻未能適應。據外媒報導,與趙晟佳同期加盟的兩位前OpenAI研究員——Ethan Knight與Avi Verma,在入職不到一個月內相繼離職,重返OpenAI。來自GoogleDeepMind的研究科學家Rishabh Agarwal也在短短數月後選擇離開。對這些頂尖研究者而言,Meta雖能提供豐厚的薪酬,卻難以復現他們理想的科研環境。一位離職員工坦言:“人才終將流向能產生共鳴的地方。缺乏內在凝聚力的體系,終會從內部瓦解。”與此同時,管理層的“低齡化”與信任危機逐漸浮現。統管Meta AI全域的Alexandr Wang年僅28歲,此前並無人工智慧領域的研究經驗,其背景主要來自營運資料標註公司Scale AI。這種“外行領導內行”的局面,在內部引發了諸多資深科學家的困惑與不滿。有內部人士透露,Alexandr Wang所帶來的Scale AI高管團隊與Meta原有體系格格不入,管理方式簡單直接,甚至導致Meta與Scale AI在資料合作層面出現裂痕。更深遠的影響體現在FAIR實驗室的邊緣化。在MSL成立前,由楊立昆一手打造的FAIR實驗室一直是Meta AI的金字招牌。然而在新架構下,FAIR被整體併入MSL體系。儘管楊立昆名義上仍保留FAIR首席科學家頭銜,但在匯報關係上,這點陣圖靈獎得主需要向28歲的Alexandr Wang匯報。儘管祖克柏與楊立昆本人均公開否認角色變化,但在外界看來,隨著公司資源全面向以產品化為導向的MSL傾斜,堅持“世界模型”長線研究的FAIR團隊,實際上已失去對Meta核心AI戰略的主導權。Llama 4的失利成為壓垮駱駝的最後一根稻草,也成為楊立昆選擇體面離開的導火索。儘管雙方在分手聲明中保持了極大的克制,甚至達成了投資合作的“第三條道路”,但楊立昆的離去,無疑標誌著Meta AI那個充滿理想主義的學術時代正式落幕。面對重重挑戰,Meta正嘗試踩下剎車。據《金融時報》獲得的內部備忘錄顯示,Meta已暫停MSL除關鍵崗位外的所有招聘,以期在制定新戰略的同時更審慎地規劃未來。而這一切的挑戰,恰恰發生在個人能力與時代機遇碰撞的關鍵節點。對趙晟佳而言,出任首席科學家僅僅是開端。他不僅需要帶領團隊在技術上追趕GPT-4、打造更強大的Llama 5,更要在Meta複雜的官僚體系與文化衝突的夾縫中,為祖克柏找到通往AGI的可行路徑。而這場權力更迭的意義,早已超越了趙晟佳個體職業生涯的起落。它對應出整個AI產業在理想與現實間的艱難平衡,也預示著科技巨頭在AGI征程上更加激進的投資邏輯。這位90後華人科學家必須證明:超一億美金的薪酬背後,是與之匹配的遠見與實力。在趙晟佳按下"普羅米修斯"叢集啟動鍵的那一刻,一場新的AI競賽已經悄然開始。 (首席商業評論)
《經濟學人》丨諾貝爾獎得主撰文:穩定幣為何名不副實
A Nobel laureate on why stablecoins may be nothing of the sort讓・梯若爾撰文指出,支付體系必須建立在公共基礎設施之上,而非投機性代幣Illustration: Dan Williams得益於《GENIUS 法案》的推動,穩定幣已躋身金融主流。這項於今年 7 月通過的美國法案,為這類數字代幣建構了監管框架,使其獲得合法性,同時也為金融機構推出自有穩定幣鋪平了道路。由唐納德・川普總統及其家族支援的某加密貨幣企業已發行穩定幣 USD1。而由泰達公司(Tether)發行的最受歡迎穩定幣,其市值在過去 12 個月內飆升 46%,達到 1740 億美元。這類加密貨幣與美元等現實世界資產掛鉤,相較於價格劇烈波動的比特幣,它承諾更高的穩定性,同時也被宣傳為一種低成本、高效率的支付方式。然而,穩定幣帶來的風險將遠超其益處,且市場上已存在替代方案。以比特幣為首的第一代加密貨幣支持者群體構成複雜,既有科技愛好者、力求擺脫政府管控的自由意志主義者,也不乏洗錢者與渴望快速暴富的投機者。處於這一領域前沿的企業,主要依靠鑄幣稅(代幣發行收益)和交易手續費(由支援代幣交易的平台收取)盈利。批評者則認為這類加密貨幣幾乎不具備社會價值:它們不僅讓逃稅變得更容易,導致政府喪失鑄幣稅收入,還因 “挖礦” 過程消耗大量能源而造成資源浪費。此外,它們還會削弱央行在危機中穩定經濟、遏制投機性衝擊下資本外流的能力。而其劇烈的波動性,也使其無法真正勝任貨幣的職能。穩定幣的出現,本被視為解決上述最後一個問題(即波動性問題)的方案。通過與美元或其他安全資產掛鉤,穩定幣宣稱能將數位技術的高效性與價值穩定性相結合。同時,它們還將自己定位為傳統高成本支付機構的競爭對手 —— 這些機構包括銀行,以及Visa、PayPal、SWIFT等支付平台,尤其在跨境轉帳領域。乍看之下,這似乎是一種進步。但正如 2008 年金融危機前的衍生品與次級抵押貸款證券那樣,看似安全的金融創新往往會埋下危機的種子。穩定幣與貨幣市場基金類似,表面上看似安全,實則在壓力下可能崩潰。屆時,政府可能會迫於壓力救助穩定幣持有者,以保護小微企業與家庭、防止金融風險蔓延,或是維護其 “對加密貨幣友好” 的轄區聲譽。而這種 “政府可能救助” 的預期,又會反過來鼓勵更多風險行為。穩定幣支持者堅稱,穩定幣完全由 “美元資產”(即美元計價的現金、銀行存款、美國國債、貨幣市場基金)提供背書,且會計師事務所會定期審計以核實儲備金規模,監管機構則會解讀審計結果並採取必要的執法行動。但在實際操作中,“完全背書” 並非板上釘釘。泰達公司曾因虛報儲備金規模被處以罰款,其儲備金從未經過獨立機構的全面審計;另一家穩定幣發行機構 Circle,曾因矽谷銀行倒閉而面臨 8% 的儲備金受損風險(幸運的是,矽谷銀行的未投保儲戶最終獲得了公共資金救助)。即便儲備金真實存在,對其 “是否足額” 的細微疑慮也可能引發破壞性的擠兌潮:例如 2022 年,演算法穩定幣 TerraUSD(註:一種依賴演算法而非足額資產背書的穩定幣,安全性低於足額儲備型穩定幣)就宣告崩盤。更令人擔憂的是,《GENIUS 法案》中關於穩定幣贖回的規定 —— 包括如何兌現持有者的贖回請求、在流動性緊張時是否暫停兌付以穩定局面等 —— 仍模糊不清。此外,現金、政府債券等安全資產的收益率極低。歷史上不乏這樣的案例:受審慎監管約束的銀行,會轉而尋求那些偽裝成 “安全資產” 的高風險資產。那麼,為何要假設監管遠少於銀行的穩定幣發行機構,會表現得更穩健,不去通過承擔利率風險或投資未投保存款等方式追求更高收益呢?《GENIUS 法案》禁止穩定幣發行機構支付利息,這一規定是為了安撫擔心存款流失的銀行(順帶一提,若銀行存款大規模流失,將危及金融中介功能,進而影響信貸可得性)。但該禁令並不適用於 Coinbase、PayPal 等穩定幣交易平台。這種區別對待留下了監管漏洞:交易平台可與發行機構合作,卻無需遵守適用於發行機構的監管規則。部分平台利用這一漏洞提供 “後門獎勵”(例如 Coinbase 與 PayPal 均通過返利形式提供此類獎勵),並為支撐這些獎勵而承擔風險。但與銀行不同,這些平台無需滿足資本充足率、流動性等監管標準,也無需繳納存款保險費。由此,它們躋身 “影子銀行” 行列 —— 這類機構享受隱性的公共擔保,卻無需承擔相應的監管成本。政治因素進一步放大了上述風險。當前美國政府在推廣加密貨幣方面既存在個人經濟利益,也有意識形態傾向,同時還有地緣政治層面的動機:加密貨幣的推廣能提振全球對美元的需求,從而為貿易逆差提供融資支援。此外,傾向於支援加密貨幣的人士也已被任命為監管官員。在這種背景下,寬鬆監管似乎已成定局。對於歐洲及其他地區而言,這一局面令人擔憂。任何對美元穩定幣實施嚴格監管的舉措,都可能被川普政府定性為 “不公平貿易壁壘”—— 正如美國當前將歐洲管控科技巨頭的舉措(例如近期依據《歐盟數字市場法案》認定蘋果、Meta 違規)描繪成貿易保護行為一樣。穩定幣的興起,凸顯了市場對更快速、更低成本、24 小時不間斷且 “可程式設計”(能在特定條件滿足時自動、高效地執行並結算)支付方式的真實需求。但公共部門完全有能力、也應當直接滿足這一需求。巴西與中國已建成高效的數字支付體系;歐元區也在推進央行數字貨幣的研發。支付體系本就屬於公共產品。不過,鑑於創新往往源自私營企業,公共支付基礎設施應保持開放,並提供程式設計介面,讓創業者能在該體系之上開發各類應用。若能順利推進,這樣的體系可將公共信任與私營部門的創新活力結合起來。作為最新的金融熱潮,穩定幣或許看似光鮮,但它們在讓少數人暴富的同時,也可能破壞金融穩定。更優的選擇是將支付體系視為一種共享的公共設施,而非投機者的遊樂場。 (邸報)
諾獎得主中國科學家屠呦呦當選美國國家科學院外籍院士
2025年4月30日,美國國家科學院(National Academy of Sciences)宣佈選舉了120名新成員和30名國際成員,以表彰他們在原創研究領域的傑出成就。值得注意的是,諾獎得主屠呦呦教授榮膺其中,成為新一屆的國際院士。美國國家科學院成立於1863年,是美國最具權威和影響力的科學機構之一。作為一個獨立的非營利機構,該院致力於為國家和全球重大科學問題提供權威建議,推動科學創新和技術進步。院士選舉是該機構最嚴格和最高的學術榮譽,旨在表彰在科學領域做出突出貢獻的科學家。屠呦呦,女,漢族,中共黨員,1930年12月出生,浙江寧波人。1955年畢業於北京醫學院(現北京大學醫學部)藥學系。屠呦呦畢業後分配到衛生部中醫研究院(現中國中醫科學院)中藥研究所工作至今,現為中國中醫科學院青蒿素研究中心主任,終身研究員兼首席研究員,博士生導師。多年從事中藥和中西藥結合研究,突出貢獻是發現並研發了新型抗瘧藥物青蒿素和雙氫青蒿素。1978年屠呦呦領導的中醫研究院中藥所“523”研究組受到全國科學大會的表彰,1979年“抗瘧新藥青蒿素”獲得國家發明獎二等獎。2011年獲美國拉斯克臨床醫學研究獎,2015年獲諾貝爾生理學或醫學獎,同年獲美國華倫·阿爾波特獎,2017年獲2016年度國家最高科學技術獎,2018年獲改革先鋒稱號,2019年被授予共和國勛章。此次當選不僅是對屠呦呦個人學術成就的肯定,也體現了國際科學界對中國科學家的高度認可。 (科學家雜誌)