麥肯錫發佈的《Technology Trends Outlook 2025》給出了對未來 5–10 年全球產業競爭格局的結構性觀察。報告總結 13 項前沿技術趨勢,並以創新度、關注度、人才與資本投入等指標衡量其演進速度。趨勢之間並非彼此孤立,而是被 AI 重新聯通,形成加速循環。本解讀聚焦這 13 項趨勢的底層方向、結構性變數及其對企業策略的潛在影響。一|AI 革命:兩個核心趨勢正在重構所有行業1. 代理式 AI(Agentic AI)智能體從“模型”走向“同事”。能夠自主規劃多步驟任務、執行操作、與其他智能體互動,正在成為企業級創新的新入口。其特徵在於:多步驟自主執行(planning → tools → action)跨系統協作從“問答”升級為“代辦”這項趨勢仍處早期,但增速最快,企業正在測試“虛擬營運員、虛擬研究員、虛擬產品經理”等角色。2. 人工智慧(AI,本體)生成式 + 應用型 AI 不再拆分,形成統一範式。AI 是 13 項趨勢的“倍增器”,趨勢之間的大部分加速,均由 AI 提供的:模型能力訓練效率自動化與研發外推能力所推動。AI 不僅改變企業營運,也正在改變 R&D 的速度本身。二|計算與連接前沿:六項關鍵基礎設施進入規模化階段3. 特定應用半導體(Application-specific Semiconductors)AI 訓練/推理需求推動專用晶片加速增長:高頻寬儲存專用互連能耗/散熱最佳化它本質上是下一輪算力紅利的源頭。4. 先進連接技術(Advanced Connectivity)5G/6G、Wi-Fi 6/7、LEO 衛星網路等推動:工業現場即時控制車路協同超低延遲應用企業級連接正從“頻寬競爭”轉向“場景競爭”。5. 雲與邊緣計算(Cloud & Edge Computing)訓練側集中化、推理側本地化平行發展。集中:超大規模資料中心擴張本地:車端、機端、家庭端嵌入式 AI兩條軌道共同支撐未來的 AI 計算體系。6. 沉浸式現實(Immersive Reality)AR/VR/Passthrough + AI 提升內容生成、互動與渲染。應用落點從消費側轉向:工業培訓醫療輔助遠端協作7. 數字信任與網路安全(Digital Trust & Cybersecurity)AI 規模化後最關鍵的基礎設施之一:模型安全身份/權限控制零信任體系應用越深入,治理成本越高。8. 量子技術(Quantum Technologies)被重點關注但商業落地不均衡。材料/藥物設計密碼學安全複雜最佳化問題仍需要克服物理噪聲、規模化裝置與基礎設施建設。三|尖端工程:五項技術正在重塑實體世界的結構與節奏9. 未來機器人技術(Next-gen Robotics)類人機器人、自主移動機器人(AMR)進入新周期。特徵:自適應動作具備“學習趨向”動作能力與智能體結合形成“數字 + 物理”協作網路10. 未來出行(Future Mobility)不僅是無人駕駛,而是 人以資料為中心的移動系統:智慧道路 + 智慧交通V2X(車路雲協同)城市空中交通(UAM)本質從“車輛自動化”升級為“交通系統智能化”。11. 未來生物工程(Future Bioengineering)基因編輯、蛋白質設計、細胞工程進入工業化處理程序。應用覆蓋:新藥發現食品體系重塑生物製造這一賽道與 AI 科學研究(AI for Science)高度耦合。12. 未來空間技術(Space Tech)低軌衛星星座、可重複使用火箭、地面直連衛星(D2D):全球連接地球觀測太空物流是供應鏈 + 通訊網路重新分佈的新基礎設施。13. 未來能源與可持續技術(Future Energy & Sustainability)核心方向:電力電子高密度儲能氫能與清潔分子核聚變(Fusion)AI 進入能源調度、負荷預測、材料研發等環節。四|結構性洞見:13 項趨勢在形成統一的技術循環在麥肯錫的邏輯中,13 項趨勢非獨立賽道,而是形成 “技術循環(Tech Flywheel)”:AI 提升所有趨勢的研發效率算力基礎設施 → AI 模型 → 應用場景 → 反饋資料 → 更強模型機器人、能源、生物工程等領域又反過來為 AI 提供新場景與新材料即:AI 不是一個行業,而是所有行業的執行層。五|對企業的三個策略性提示1. 高影響場景優先,而非全面鋪開企業需要識別能產生“倍增效應”的少量關鍵場景,而不是技術清單化部署。2. 人才與基礎設施決定速度算力、資料、晶片管道、模型安全與內部工程化能力,將決定競爭強弱。3. 監管、倫理與生態協同將成為主變數AI 智能體、量子、基因工程等領域,很快會進入監管與倫理密集期。治理成熟度將成為競爭門檻。 (方到)