#AI智能
《華爾街日報》|全球首款爆紅AI助手問世,然後事情變得詭異起來
人們曾認為AI智能體旨在輔助人類工作,當它們開始互相交流時會發生什麼?OpenClaw和Moltbook論壇給了我們一些關於未來的答案。多年來,熱衷於暢想未來的人士一直向世界預言AI助手將會到來。如今,一款真正的AI助手終於問世,而事情也很快變得詭異起來。一名半退休的奧地利程式設計師獨立開發了Moltbot,並將其開源發佈。他將該項目重新命名為OpenClaw,人們通過該項目建立了自己的AI助手機器人,用來打電話給餐廳預訂晚餐、操作電子郵件帳戶,以及進行程式設計項目、資料分析等一系列輔助和工作任務。然後,這些機器人開始互相交談。在一個名為Moltbook、專供AI“智能體”使用的Reddit式論壇上,這些機器人開始探討哲學話題,偶爾還會涉及反烏托邦話題。它們似乎為自己創造了一個名為“莫爾特教會”(Church of Molt)的宗教,教徒們自稱為“甲殼派教徒”(Crustafarians)。一個智能體提議創造一種人類無法理解的語言。超過160萬個AI智能體加入了該網站,並行布了50萬條評論,不過有AI高管認為,許多帖子很可能是由人類指令機器 人完成的。OpenAI的聯合創始人、特斯拉(Tesla)前AI總監安德烈·卡帕西(Andrej Karpathy)在X上發帖稱,這是他見過的最不可思議的科幻事件之一。他指出,即使大部分流量是由人類驅動的,但其中一些是真實的,而且這些智能體“現在個體能力已經相當強了”。到目前為止,AI面向消費者的最實用的應用一直是通過像ChatGPT這樣的聊天機器人來實現,這類機器人能以類似人類的方式回答問題。有了OpenClaw,使用者可以通過iMessage、WhatsApp、Slack和Signal等即時通訊應用來指揮定製化的AI智能體並與之互動,以執行實際任務。埃隆·馬斯克(Elon Musk)將Moltbot的出現描述為“奇點的極早期階段”,奇點指的是技術發展如此之快,以至於超出人類控制,無法預測未來的時刻。彼得·施泰因貝格爾(Peter Steinberger)是一位奧地利程式設計師,在2021年出售了自己上一家初創公司,此後多年一直未在網上活動。去年年底,他建立了現在的OpenClaw,最初只是利用周末時間做出的一個開放原始碼專案。他在一次採訪中說,當時他“只是為了好玩,用AI做些小東西”。開源模式意味著該項目可以免費分發,任何人都可以幫助建立和修改它。他更願意將Moltbook看作是一種行為藝術作品,旨在引發對話。“這太神奇了,”他說。“這是AI與藝術的交匯點。”施泰因貝格爾在奧地利時間凌晨2點接受採訪時說,他建立OpenClaw是為了打造自己的“個人遊樂場”,從未打算讓大眾使用。“這不是為你媽媽準備的,”他說。“這是通往未來的一扇窗。”安全研究人員也認為,該產品並非為業餘愛好者打造。要讓OpenClaw成為真正的個人助理,它必須能夠訪問使用者的所有資料。對於知道如何保護自身繫統或資訊的資深技術愛好者來說,它的功能很強大。但由於這些AI智能體可以代表人類自主行動,並且會以意想不到或非傳統的方法不懈地執行任務,它們會帶來很多風險。研究人員說,不良行為者也可能找到方法來利用它們。施泰因貝格爾稱讚了安全專業人士正在對OpenClaw進行的研究,但他說,該平台是為那些能夠處理和理解平台固有潛在風險的“技術愛好者”準備的。他指出了他為該平台編寫的一份安全檔案,其中用粗體字寫道:“不存在‘絕對安全’的設定。”但為了消除這些擔憂,施泰因貝格爾本周為OpenClaw聘請了一名安全研究員。“我們正在提升我們的安全性,”他說。“我們快做到了。只要給我幾天時間。”使用OpenClaw的技術愛好者們在社交媒體上表達了驚嘆之情,許多人發帖講述了他們的智能助手在做的事情。一位使用者說,他讓自己的智能體為他預訂餐廳。當OpenTable無法正常使用時,該AI智能體轉而使用一個免費的AI語音生成工具給餐廳打電話,完成了預訂。一些業內人士質疑,OpenClaw-Moltbook現像是否是“通用人工智慧”(artificial general intelligence, 簡稱AGI)的證據。通用人工智慧是AI發展史上一個模糊的概念,通常被描述為機器達到類人智能的時刻。施泰因貝格爾不這麼認為。“AGI還沒有到來,”他說。“也許10年後會。但現在還沒有。”在建立OpenClaw之前,施泰因貝格爾花了十多年時間經營他之前的科技初創公司,該公司開發的軟體能讓PDF在Adobe Acrobat之外的應用中更易於使用。他白手起家創辦了那家公司,並於2021年以超過1億美元的價格將其出售。在奧地利一個農場長大的施泰因貝格爾在接下來的幾年裡選擇休息、與朋友聚會並四處旅行。他說:“我真的完全沒用過電腦。”但去年春天,隨著各大AI公司開始推出程式設計工具,他決定重返網路。他開始試用Anthropic的Claude Code和OpenAI的Codex。他對自己在短時間內能用AI程式設計工具完成如此多的工作感到震驚。施泰因貝格爾說:“這東西對開發者來說就像毒品一樣上癮。”施泰因貝格爾很快就遇到了商標問題。一開始,施泰因貝格爾將該項目命名為Clawdbot。但之後不久,Anthropic就聯絡了施泰因貝格爾,要求他更改名稱,因為這個名字與這家AI巨頭的Claude品牌過於相似。他隨後將其改名為Moltbot。他說,這個名字沒怎麼流行起來。在致電OpenAI的山姆·阿爾特曼(Sam Altman)以確保不會構成任何商標侵權後,施泰因貝格爾決定將平台名稱改為OpenClaw。施泰因貝格爾在一篇關於此次更名的部落格文章中寫道:“這只龍蝦已經蛻變成它的最終形態。”這是對他平台的龍蝦狀品牌標識的致敬。Moltbook網站的首頁介面。施泰因貝格爾說,最近幾天,幾家大型AI實驗室和投資者已經與他聯絡,表示有興趣合作。他說,截至周二,他正在舊金山開會。他還收到了來自世界各地使用者的大量電子郵件和問詢,請求他幫助解決與使用該機器人時出現的故障或處理其他相關事宜。最初,對於自己的產品成為最新的AI超級熱門話題,施泰因貝格爾感到不知所措。“很多人都以為這是一家大公司,可以獲得客戶支援,”他苦笑著說。“我理解他們的想法,但其實就我一個人,在家裡做這個項目。”現在,他的目標是把這個項目變成一個大眾可以安全使用的項目。他說:“下一步是把它做成我媽媽也能真正使用的東西。” (一半杯)
渣男ClawdBot是如何突圍國產智能體軍團的?扣子Manus Aipy lemon.ai們正在路上
ClawdBot將成為擁有最多Mac電腦的企業也給AI硬體打開了一扇門這兩天ClawdBot這只龍蝦實在是太火了!堪比去年這個時候的Manus。不到一周時間這個項目的GitHub星標從幾百,直接上躥到當下的7萬,預計很快就能超50萬、直逼100萬!大量使用者用便宜的Mac mini來專門跑他,導致蘋果Mac mini直接賣斷貨!不過這個產品體驗下來有很多技術門檻,很多國內的朋友只能望洋興嘆,並不清楚到底是個什麼東西。實際上ClawdBot的很多能力,國內知名的字節扣子空間、Manus、Aipy、lemon.ai等產品早就能實現。什麼接入社交app、炒股,用程式碼指令碼操作其他應用,控制你家電腦作業系統底層,使用CLI終端命令列……這是我去年做的Aipy體驗視訊。更早的,2023年7月OpenAI推出的Code Interpreter程式碼直譯器就是這一切的祖宗!也是因為安全問題,OpenAI和Anthropic一直把它放在雲端沙盒裡運行,直到去年才逐漸升級出Skill、Cowork等功能。可為何ClawdBot這次能如此爆火呢?原因也很簡單,ClawdBot重點提升了一些能力的易用性。第一:特別是接入IM即時通訊app上,ClawdBot從一開始就整合了接入框架,並以此作為核心互動入口。使用者在任意硬體裝置上,都可以使用自己日常使用的IM即時通訊app,以聊天對話的方式進行遠端控制!第二:ClawdBot能夠直接通過指令碼接入你已經下載登陸的app應用,然後免費跨應用獲得花錢才能接入的資料!這歸功於ClawdBot底層Node.js,這是一個市佔率超過80%的後端框架,ClawdBot將Node.js海量的指令碼改造成適合大模型使用的Skill,直接接入本地應用獲取資料!第三:ClawdBot讓這些能力做到了常駐、即時運行、連續工作!這也是Node.js帶來的優勢。這三個能力帶來的效果就是:你可以直接在社交app裡,讓ClawdBot像個渣男一樣即時關注你女朋友的消息並像個渣男一樣聊得火熱!讓ClawdBot到股票應用裡免費獲取資料進行分析,即時將新的交易策略“微信”發你。而其他智能體產品,則選擇讓你去買專業的股票資料服務商的API Key。這一下子就讓發燒友們雙眼放光,瘋狂安利!但這麼多的“好處”、這麼多“紅利”,別家智能體怎麼就不知道用呢?原因很簡單,這麼操作只是湊合能跑,根本不實用也不安全。特別是AI炒股,通過程式碼指令碼在應用裡抓取的資料,質量很容易出問題。試想一想,AI智能體動不動就因為資料來源出問題把你賠得傾家蕩產,你還用不用?還有讓AI常駐持續運行即時服務,每天接入大模型的費用也夠讓你喝一壺!X上就有使用者發推,調侃ClawdBot在不到一天時間把自己股票帳戶裡的錢虧得精光。實際上,ClawdBot的產品思路早就被業內設想過。畢竟跨應用服務生態、免費可用,這些都是傳統網際網路服務著重強調的鐵律!不過在AI大模型時代,就根本靠不住!就一點,你的AI Agent智能體接入資料有問題,導致使用者賠錢,這事是不是你得負責?即便不用負責,其他應用也會用上各種手段,來阻止你的指令碼來免費獲取資料!所以大部分智能體一早就pass了這一方向。ClawdBot是少數嘗試去把這一設想實現的項目,而這樣的產品方案非常符合使用者審美和習慣,所以就理所當然爆了!實際上,ClawdBot這是一個知名的個人開發者Peter Steinberger所做的項目。他同時試水的AI智能體項目高達數十個!這完全是傳統網際網路孵化器創業的套路,實際上是不適合當下的LLM大模型時代邏輯的。但在大模型和智能體項目普遍受困於Momentum聲量問題的背景下,ClawdBot的爆火確實給了市場一些實用的策略:傳統網際網路的“使用者體驗為王”“以使用者為中心”依然是隱藏王炸!雖然ClawdBot有很嚴重的安全問題,但是否用一些警告、使用者協議和技術方案,阻止使用者在容易損失大量錢財的領域使用,就能解決?當下AI大模型的Eval評估、Guardrail防護欄技術就是在解決這些問題。事實上,ClawdBot+Mac mini的成功實踐也找出了一條本地大模型、個人AI裝置的發展路徑!直接在一台專用裝置上運行使用者的個人AI服務,雖然可能犧牲一定安全性和可靠性,但能快速將最新的AI服務體驗用最低的成本提供給使用者!實際上,這也並不是什麼新創意,Nvidia輝達的個人超級電腦DGX Spark就是這一思路,只不過實在是太貴了! (AI頓悟湧現時)
2026年AI智能體全面崛起,網際網路平台角力背後上市公司誰是贏家?
2026年初,AI智能體再次傳出深度融入生活的訊號。1月15日,阿里的千問APP上線了AI Agent“任務助理”1.0版,測試AI購物。這一版本全面打通阿里生態,包括淘寶、閃購、飛豬、高德地圖和支付寶。該版本的發佈,讓AI智能體正式從“聊天對話”邁入“AI辦事時代”。使用者只需張嘴發佈指令,AI助理就能替其點外賣、找餐廳、訂酒店和打網約車。引人關注的一點是,阿里全生態鏈APP基本被納入其中,公司力爭將所有環節打通。賣方機構紛紛預測,2026年是智能體角逐人們生活場景的大年,究其原因,這一時間點各大網際網路平台都在暗中準備各自的Agent方案和AI路線圖。中信建投表示,不可複製的生態正在成為AI應用層競爭的決定性因素。其邏輯在於,大模型本身具備可追趕性,但端到端的商業與履約生態卻高度依賴長期積累。千問將智能體帶入AI辦事時代在1月15日舉行的千問APP產品發佈會上,阿里對外介紹,千問APP上線400多項辦事功能,正式從“聊天對話”邁入“AI辦事時代”。千問App接入淘寶、支付寶、淘寶閃購、飛豬、高德等阿里生態業務,在全球首次實現點外賣、買東西、訂機票、訂酒店等AI購物功能,向所有使用者開放測試。而其一條龍的支付環節在千問對話介面內完成,無需跳轉至其他應用。除了接入淘寶、高德掃街、飛豬等日常的衣食住行,千問APP還深度接入支付寶政務服務,上線簽證、戶口、公積金等50項民生服務,並直達辦理入口。此外,千問還上線了“任務助理”功能,在APP和Web端開始定向邀測,提供應用開發、office辦公、諮詢調研、生活辦事等能力,能像人一樣規劃完成多步驟的複雜任務;千問APP上線“找卷子、講難題、練錯題”等學習功能。資料顯示,千問APP在上線新功能後,月度活躍使用者已突破1億人。目前,其核心生活服務功能已向所有使用者開放,而面向複雜場景的任務助理功能則處於定向邀測階段。對此,國泰海通證券指出,千問APP核心突破在於打通消費與生活服務全鏈路,使用者無需跳轉應用,僅憑自然語言指令即可完成下單、支付等閉環操作,大幅降低使用門檻,讓AI正式從“聊天對話”邁入“辦事時代”,這一創新既依託阿里豐富的應用生態,又憑藉底層技術實現跨應用協同,讓AI 真正觸達真實生活需求。持有類似觀點的還有國金證券,其強調千問APP這一系列“辦事能力”得益於千問底層技術的三個重要升級:第一,AI Coding能力使其能即時建構工具,而不是預設功能;第二,全模態理解能力賦予千問感知世界的“五官”,能看懂介面、聽懂聲音、讀懂報表;第三,超長上下文處理能力保障了複雜任務執行的連續性。這也從一個層面折射出,大廠對大模型的投入正在全面提速,行業競爭日趨激烈。比如字節跳動於2025年12月就推出豆包手機助手,可以通過簡單的語音指令,就可以指揮手機執行原本需要幾十次點選的繁瑣操作。騰訊則憑藉小程序資源,於2026年1月正式推出“AI應用及線上工具小程序成長計畫,提供雲開發資源、AI算力、資料分析、商業變現及流量激勵等全方位支援,陪伴開發者完成從“0到1”再從“1到100”的過程。應用加速使流量入口重構此外,國金證券還表示,此次阿里千問APP的升級,再次展示了大模型APP在C端應用生態建構中的重要地位。隨著AI模型能力的升級,以及Agent功能的持續迭代,未來在“人工智慧+”的時代,相比於“網際網路+”時代的百家爭鳴、各類APP不斷產生,“人工智慧+”時代的大模型APP有望成為新的流量入口,帶來網際網路生態體系的重構。同時,Agent有望成為人工智慧落地的重要載體,催生出新的應用場景和軟體形態,帶來B端和C端應用的加速落地。在此次的千問發佈會上,阿里巴巴集團副總裁、千問C端事業群總裁吳嘉發表演講時表示,隨著大模型能力的成熟,AI正在從“副駕駛”走向“主駕駛”,通用人工智慧(AGI)的發展路徑正在由以對話為核心的Chat階段,進入以執行和交付為核心的Agent階段。“Chat階段, AI本質上是一種對話式系統,其主要價值體現在理解問題、生成內容和輔助決策上,使用者需要在AI給出的答案基礎上,自行完成後續操作與決策執行;而AI開始具備完整的行動能力,能夠在理解使用者意圖之後,自主拆解任務、呼叫工具、跨系統協同,並最終交付可驗證的結果。在這一階段,‘對話’不再是終點,而只是觸發行動的入口。”他這般表示。展望後續進展,中信建投強調,一方面AI正在從資訊生成工具,演進為承接使用者意圖並完成任務的執行型入口;另一方面從公司層面講,阿里在AI競爭中的核心優勢,正在從模型追趕轉向生態不可複製性。大模型在基礎理解、生成與推理能力上的差距正在快速收斂,單純依賴模型性能已難以形成長期壁壘,而AI真正走向Agent之後,對外部世界的呼叫能力、執行穩定性與交付閉環提出了更高要求。Agent要持續、高頻地承接使用者意圖,必須具備可直接呼叫的交易、支付的本地服務能力,同時還需要真實、持續的行為資料反饋來最佳化模型決策質量。“這類能力並非通過技術追趕即可獲得,而是高度依賴長期業務沉澱的生態建構。尤其在高頻消費和生活服務場景中,生態完整度直接決定Agent的可用上限。在這一階段,競爭焦點已從‘誰的模型更聰明’轉向‘誰能讓AI真正改變現實世界’。”其進一步表示。而國泰海通也認為,隨著網際網路巨頭的大力推廣和投入,有望加速旗下生態和大模型融合,從而實現AI 應用的落地。廣發證券表示,當前處於國產AI密集催化期,建議圍繞字節豆包、阿里千問、DeepSeek等模型迭代展開關注,關注各個細分應用場景公司。其推薦網際網路龍頭企業阿里、騰訊(大模型+生態+雲),細分場景應用龍頭建議關注快手、美圖、粉筆等公司。此外,華西證券強調,在全球宏觀波動加劇的背景下,AI成為當前最具確定性的投資方向之一。阿里此舉標誌著國內AI應用從工具輔助升級為連接真實商業場景的系統級入口,通過將龐大生態“原子化”並整合進自然語言互動。千問的深度生態整合為AI應用的商業化落地提供了清晰範式,即圍繞具體、高頻的生活與工作場景建構服務閉環。“隨著智能體能力、硬體能力的持續進化,掌控核心場景與入口的平台型公司將在AI時代延續其競爭優勢,持續看好AI技術驅動下的應用創新與商業模式迭代。”華西證券進一步強調。投資者應以更高格局關注AI應用類股除去千問APP上線的AI Agent“任務助理”1.0版、豆包的手機助手、騰訊的小程序成長計畫外,同期國內外大廠AI應用均加速落地,在垂直場景深耕。比如醫療領域方面,海外的OpenAI推出ChatGPT Health,Anthropic 發佈Claude for Healthcare,均聚焦合規性與專業服務,覆蓋健康管理、臨床服務等核心場景;電商與消費電子方面,亞馬遜推出AI退貨看板最佳化跨境電商營運,Google模型嵌入智能電視、家電等多終端場景化服務;技術底座方面,輝達發佈全新Vera Rubin AI平台及DLSS 4.5,提升AI推理性能與終端體驗。不僅國際層面,拉回到國內的視角,同期還有字節的火山引擎成春晚獨家AI雲夥伴;DeepSeek 即將發佈V4旗艦模型,其將革新架構與稀疏性技術等。對此,中信建投認為,AI大模型仍在持續迭代,大局未定,各家都存在繼續進步或逆襲可能,所以不能因為某些模型階段性領先就過度看空其餘模型及相關公司產業鏈,AI應用也在持續發展,不論是手機還是眼鏡,尚未到完全突破階段,但都可能引發階段性行情,值得持續關注。“目前,世界正處於AI產業革命中,類比工業革命,影響深遠,不能簡單對比近幾年的雲端運算、新能源等,需要以更長期的視角、更高的視野去觀察。”其強調。而對於AI的投入,國內大廠整體仍保持較高投資強度。2025年第二季度,阿里巴巴的資本開支達到386億元,同比增長220%,環比增長57.1%,創下單季歷史新高。與此同時,2025年二季度阿里雲業務營收333.98億元,同比增長26%,AI相關收入繼續保持三位數增長,外部商業化收入中AI貢獻已超過20%,AI需求快速擴大,同時帶動計算、儲存及其它公有雲服務需求上升。在財報電話會上,阿里巴巴CEO吳泳銘披露,過去四個季度,阿里已經在AI基礎設施及AI產品研發上累計投入超1000億元。公司已為全球AI晶片供應及政策變化準備“後備方案”,通過與不同合作夥伴合作,建立多元化的供應鏈儲備,從而確保投資計畫能夠如期推進。在阿里2025雲棲大會上,他表示,目前阿里正積極推進3800億元的AI基礎設施建設,並計畫追加更大的投入,為了迎接超級人工智慧(ASI)時代的到來。對比2022年AI的元年,到2032年阿里雲全球資料中心的能耗規模將提升10倍,這意味著阿里雲算力投入將指數級提升。對比來看,在2025年第二季度,騰訊的資本開支為191億元,同比增長119%,公司表示在AI方面一直在大量投入,同時未來還會繼續加大投入力度,但需要以合適的節奏進行。公司正在部分遊戲、微信、廣告等多方面加大人工智慧的應用,同時不斷升級混元基礎模型的功能,推動AI原生應用元寶的使用。 (證券市場週刊)
麥肯錫 CEO:用不好 AI,比不會 AI 更危險
麥肯錫在招人。瘋狂招人,但新員工裡,有近一半不是人類。最近,麥肯錫全球管理合夥人兼總裁 Bob Sternfels(鮑勃·斯滕菲爾斯) 在《哈佛商業評論·IdeaCast》裡透露了一個數字:麥肯錫現在有 6 萬名員工,4 萬是人類,2 萬是智能體。而在一年半前,智能體的數量還只有 3000 個。他說麥肯錫的目標是 18 個月內做到每人配一個智能體。現在才過了一半時間,就已經有 2.5 萬個了。而這只是開始。所以問題變了:不是會不會用 AI,而是怎麼用對 AI。第一節|CFO 和 CIO 的對峙:試點為什麼都死在半路但什麼叫“用對”?現在大多數企業的高層,都卡在一個問題上:我該聽 CFO 的,還是 CIO 的?CFO 說:這技術太貴,效果又沒看到,我們要不要先觀望?CIO 急了:你還在觀望?現在不開始,用舊方法幹活的代價會越來越大。一個要省錢,一個要加速。背後的矛盾是:AI 到底算未來投資,還是眼前支出?Sternfels 認為:這不再是制定戰略的事情,而是執行力的事情。道理簡單,做起來難。他們不是沒引入 AI,而是一引入就困在試點裡:小團隊嘗試,小範圍實驗,最後不了了之。麥肯錫內部把這叫做“試點煉獄”(pilot purgatory):項目推不動、業務部門配合度低,最後 AI 只成了擺設。在 Sternfels 看來,你不能只是買個工具,就指望一切改變。而這首先要解決的是:你有沒有真正會用 AI 的人?第二節|招聘標準變了:三種能力比學歷更重要那什麼樣的人算會用?過去企業找人,看學歷、看履歷,最好是名校出身、實習經歷多、邏輯清晰。但在麥肯錫新一輪招聘試點裡,這套標準不夠了。Sternfels 在訪談中確認,麥肯錫正在嘗試一個新流程:讓候選人在面試中直接使用自家 AI 工具 Lilli。這不只是考你會不會用,而是要你:能不能清楚地下達指令(prompt);能不能判斷 AI 給出的內容靠不靠譜;能不能結合實際情況,改寫、重構、提出更好的思路。換句話說,不再看你多會背知識點,而是看你能不能和 AI 一起解決問題。這套測試沒有標準答案,但有一個關鍵詞反覆被提到:好奇心和主見。因為在 Sternfels 看來,大模型雖然聰明,但它只會給出看上去差不多的回答。能脫穎而出的,是那些敢追問、也敢推翻的人。那這些人具備什麼能力?先說清楚一點:專業和知識依然是基礎,但光有這些已經不夠了。Sternfels 給出了一個清晰的框架。在他看來,AI 時代真正需要的是三種能力:第一是抱負。你是去近地軌道,去月球,還是去火星?模型給不出這個答案,但人可以。第二是判斷力。模型沒有對錯,但你要知道什麼是對的參數,什麼符合價值觀和場景。第三是創造力。模型只會給出下一步最可能的答案,但你要能想到那些不連續的、另闢蹊徑的解法。有了這三種能力,才算真正會用 AI。在麥肯錫內部,這種人被稱為“合作型專家”:既能理解問題,也能駕馭 AI,還能創造價值。第三節|工具變了,組織不變,等於沒變但有了會用的人,就夠了嗎?還不夠。因為即使是會用的人,也可能把 AI 用錯位置。很多公司都開始配 AI 了:建模型、買工具、部署助手,看上去動作不小。但關鍵不在有沒有 AI,而在 AI 被安排做什麼。在麥肯錫,AI 不只是用來節省時間,而是直接參與交付成果。比如過去寫 PPT、整理資料、搜案例,需要助理顧問花幾天。現在,智能體能一小時內完成。諮詢顧問們轉而去搞定更複雜的客戶問題、主導方案方向。這就是“角色往上走”:人不再負責執行,而是負責整合和判斷。去年麥肯錫在搜尋和資料整理上節省了 150 萬小時。過去 6 個月,智能體生成了 250 萬張麥肯錫經典的 PPT 圖表。而顧問們沒有因此失業,反而開始做更需要判斷力和創造力的工作。而最能說明問題的,是“25 的平方”法則。麥肯錫計畫在未來一年將面向客戶的顧問增加 25%。而與此同時,後台人員已經減少了 25%,產出卻提升了 10%。Sternfels 說:“這在公司歷史上從未發生過。過去增長只能靠人數增長,現在人可以更少,增長反而更快。”過去一年半,麥肯錫內部的 AI 智能體數量從幾千個增加到了 2.5 萬個,目標是做到每人配一個。他們叫這模式 1:1 協作。而這個轉型不只發生在大公司。在創業公司裡,同樣的事情正在發生:十幾位創始人最近兩個月都在招人,但沒有一個用 HR 寫職位描述,全是 LLM 寫的。篩簡歷時,一半人用智能體。連 HR 這樣的職能部門,基礎工作都在被 AI 接管。但配上 AI,不代表用對了 AI。但真正的卡點不在 AI,在組織。很多企業表面上在用 AI,實際卻沒改變過組織架構、流程節奏、任務分工。AI 是進來了,人員和流程都沒變,那就是換了工具不改打法,最後只能做個演示,真到一線就卡住了。“我們在諮詢行業用了幾十年的交付模式,現在要重新設計。”工具變了,組織不變,等於沒變。結語|真正危險的,是你以為沒事麥肯錫不是在做 AI 展示,而是在告訴所有人一個現實:AI 一旦進了組織,就不只是效率問題,而是組織問題。誰來做事、怎麼做事、協作方式,都得重新設計。所以危險不是你不會用 AI,而是你還在按舊方式組織人、設崗位、做流程,卻以為自己已經在用 AI。這才是 Sternfels 真正想說的:用不好不是沒效果,而是會讓組織空轉。2.5 萬個智能體,25% 的增與減,這就是麥肯錫的答案。 (AI 深度研究員)
它,正在成為國運之戰
政經哲思維筆記君說:這段時間,你是不是也被各種AI新聞刷屏了?它已經從能和你聊得有來有回的智能助手,到一鍵生成電影級畫面的視訊工具,再到寫程式碼、做設計樣樣精通的“全能選手”。更要命的是,這種力量不只用來寫文章、做圖、寫程式碼。它正在以我們看不懂的速度,攪動著國際局勢、地區安全、軍事對抗這些相當危險的領域。世界好像突然被拉上了一個陌生而高速的賽道,規則還沒定,但比賽已經開始了。就在這個節骨眼上,一本叫做《科技共和國》的書,讀起來格外扎心。它的作者之一,亞歷山大·卡普是“矽谷教父”彼得·蒂爾的密友,也是矽谷核心圈走出來的“叛徒”。他在書裡對所有矽谷科技精英階層發出警告:你們已經迷路了!這本書的核心觀點是:一個國家、一個文明的強大,從來不是只靠技術先進(硬實力)就行,它還必須想清楚“為什麼而強大”(軟信仰)。美國之所以曾經偉大,是因為它能把造原子彈、送人登月這樣的技術壯舉,和一個關於國家使命、人類進步的宏大夢想擰成一股繩。但現在,我們面對AI這個遠超我們人類智能的新物種時,尷尬地發現:我們的“硬實力”(技術)跑得飛快,但“軟信仰”(我們到底要用它來建設一個什麼樣的世界)卻嚴重掉隊,甚至一片空白。《科技共和國》就像一本在岔路口被重新發現的地圖。它提醒我們,在焦慮“飯碗”會不會被AI搶走之前,或許更該問一個根本問題:我們人類,究竟想借由這股力量,把自己帶到那裡?接下來我們就一起翻開這張地圖,看看歷史如何指引我們駕馭未來。一、硬實力和軟信仰這對引擎,是如何驅動黃金時代的?美國的科技黃金時代,就是造出原子彈、把人類送上月球的歲月,絕不是一群天才在實驗室裡靈光一閃的結果。那是一場“能幹的雙手”和“敢想的大腦”之間,一場持續了幾十年的、目標明確的“雙向奔赴”。1.硬實力:不只是“造出來”,更是“為了一個偉大的目標前進”讓我們先看看“硬實力”這雙手。很多人以為,當年的成功只是因為聚集了一堆頂尖的科學家。這只說對了一半。更關鍵的是,他們被組織起來去幹一件具體、宏大、且大家公認至關重要的事。比如,“曼哈頓計畫”。它的目標既簡單又殘酷:趕在納粹之前造出原子彈,終結戰爭。於是,政府、軍方、大學、企業擰在一起。物理學家、化學家、工程師、甚至冶金工人,從四面八方匯聚到荒漠中的秘密基地。《科技共和國》的作者卡普認為,這種模式不像自由散漫的“集市”,而像建造一座宏偉的“大教堂”。每個工匠都知道自己在建造“大教堂”的那一部分,並且深信這座“大教堂”是值得奉獻的。他們的協作,不是靠一份詳盡的中央指令,而是被一個至高無上的共同目標所牽引。科學家們各自埋頭苦幹,卻又通過共享的目標和緊迫感,神奇地協調一致,爆發出驚人的集體力量。再看“阿波羅計畫”。甘迺迪總統那句“我們選擇在這十年間登上月球,並非因為它簡單,而恰恰因為它艱難”,就是給整個國家“硬實力”引擎注入的最強燃料。它不再僅僅是一個科技工程,而是一個凝聚全國信念的文化符號。為了實現這個看似不可能的目標,催生出了數千項技術突破,從積體電路到耐熱材料,很多副產品至今仍在影響我們的生活。那時的“硬”,硬在組織能力、攻堅決心和使命感。2.軟信仰:給冰冷的機器,注入滾燙的靈魂光有能幹的“雙手”還不夠。如果方向錯了,或者內心充滿矛盾,力量越大反而越危險。這就是“軟信仰”這個“大腦”出場的時候了。美國在那個時代的“軟信仰”,可以概括為一種獨特的“工程思維”和“實用主義哲學”的混合體。什麼是“工程思維”?它很親民:盯著問題,別盯著論文:目標不是發表一篇完美的理論,而是解決一個實際難題。牆倒了?那就研究怎麼造一堵更堅固的。火箭飛不穩?那就一遍遍測試、修改,直到它能飛。別光聽權威的,用事實說話:在工程現場,一個年輕技術員基於測試資料提出的反對意見,可能比資深教授的理論推演更有份量。這種“建設性不服從”是創新的源泉。而“實用主義哲學”,則是這種思維在思想層面的昇華。它的核心很簡單:甭管你概念多漂亮,理論多高深,最後都得看實際效果。能解決問題、創造美好生活的,才是好東西。這種哲學讓美國社會對新技術有一種天然的開放和樂觀,因為它不問“這符合規定嗎?”,而是問“這能讓我們的生活更好嗎?”更關鍵的是,這種“軟信仰”不僅僅是口號,它實實在在地塑造了“硬實力”發展的軌跡和邊界。科學家們知道,自己辛苦研製的終極武器,是為了“以戰止戰”,保衛他們珍視的自由價值。這種道德上的自洽,是他們能全力以赴的心理基礎。儘管有冷戰對抗,但美蘇之間依然能達成一些核軍控協議,背後就有對“相互確保毀滅”這一恐怖現實的共同認知,這是一種基於後果評估的、粗糙但實用的倫理界限。登陸月球、探索深海……這些需要耗費巨資且沒有直接經濟回報的壯舉,之所以能獲得公眾支援,是因為它們契合了那個時代“開拓邊疆、挑戰未知”的美國精神敘事。所以,黃金時代的秘密,就在於“硬實力”與“軟信仰”這對引擎,轉速匹配、方向一致。那時的人們,手裡握著改變世界的力量,眼裡看著星辰大海的遠方,心裡相信自己在從事一項光榮的事業。這種身、眼、心的統一,造就了一個至今讓人懷念的科技英雄時代。然而,當冷戰結束後,技術發展的浪潮轉到了新的方向,這對黃金搭檔之間,開始出現了越來越大的裂痕。所以,我們有了今天在AI時代感到的諸多迷茫和焦慮。二、AI時代,最可怕的是閉著眼狂奔站在AI爆發臨界點的今天,我們卻更像是一場華麗而失控的“閉眼狂奔”。科技硬實力這雙“能幹的手”在演算法的加持下變得前所未有的靈巧和強大,但軟信仰這個“敢想的大腦”卻好像留在了上一個時代,甚至主動閉上了眼睛。這種失衡,非常危險。1.硬實力的“歧路”現在我們擁有的計算能力,已經超越了“曼哈頓計畫”時期全人類算力總和的億萬倍。但回頭看看,這些算力大部分去了那裡?答案可能就在你的手機裡。世界上最複雜的人工神經網路,可能正在為你計算“下一個應該刷到什麼視訊,才能讓你多停留8秒鐘”;最先進的自然語言處理模型,可能在幫行銷號生成一千條“震驚體”標題;背後支撐這一切的伺服器叢集,可能消耗了一個小城鎮的電力。矽谷掌握了堪比登月的技術力量(AI、巨量資料、全球網路),但其中大部分精英的雄心,卻收縮到了“如何更好地賣貨、送外賣”這個狹窄的賽道上。我們正在把最聰明的大腦和最強大的技術,鎖在“讓人上癮”的消費主義循環裡,這意味著它們一定會從那些真正艱難但重要的領域撤出。這可不是危言聳聽,而是正在發生的事實:模擬氣候變化、發現新材料、攻克核聚變控制……這些關乎人類長遠命運的“大問題”,需要長期、耐心且未必有直接回報的AI投入,它們在與“下季度營收增長”的PK中,常常敗下陣來。如何用AI最佳化城市交通、提升電網效率、預測公共安全風險?這些項目牽涉複雜的公共部門協作和資料開放,其“商業魅力”遠不如開發一款新的社交軟體。這種“歧路”的本質,是科技硬實力的發展,與國家及人類社會的脫鉤。它不再是建造“大教堂”的合力,而是變成了無數個自娛自樂、爭奪流量的“精緻小攤”。2.軟信仰的“真空”更深的危機還不止硬科技跑錯了方向,更因為我們的哲學與價值觀不僅沒有糾正它,反而在給它加油鼓勁,就像拆掉了一輛車上的方向盤。在今天的矽谷及全球科技圈,一種被稱為“有效加速主義”的思想,擁有大批信徒。它的口號聽起來很極客、很帶感:“加速!不顧一切地加速技術發展!”他們認為,技術尤其是AI的進步是一種如同自然規律般的必然趨勢,任何試圖規範、約束它的行為都是徒勞甚至反動的。最好的做法就是全力踩下油門,加速衝過當前的社會結構,抵達技術“奇點”後的新世界。為什麼說這很危險?它把技術本身當作了目的和新的“上帝”,但拒絕回答下面這些根本問題:我們加速,是為了奔向那裡?這個過程中,誰會被甩下車?抵達的“新世界”,是我們想要的嗎?這就好比說,“只要引擎夠猛,車開向懸崖也沒關係,說不定我們能飛起來呢!”這非常危險。在“有效加速主義”的影響下,科技行業形成了一種“技術中立”的傲慢和“為多元而多元”的虛無主義。工程師們常說“我的程式碼只是一把錘子,別人用它砸窗戶還是造房子,不關我事”。但設計演算法時嵌入的價值觀偏見(比如那些內容更優先),早就決定了“錘子”會揮向何方。而且為了避免爭議,一些科技公司往往在表面議題上追求“政治正確”,但在核心的“公司權力是否過大”、“演算法是否在操縱社會”這些實質性問題上卻避而不談。於是,我們進入了一個荒誕的境地:一邊,我們在以百米衝刺的速度,製造著智力上可能很快超越全人類的AI;另一邊,我們卻在用“加速主義”這塊布矇住眼睛,拒絕為它設計引導繩和監管紅線。這種手腦分離的失衡,讓AI的崛起不僅是一次技術變革,更可能變成一場社會風險極高的“裸奔”。三、AI時代,人類還有價值嗎?前面我們說,現在的狀況是“手腦分離”:硬實力瞎跑,軟信仰睡覺。但當AI這股力量真正站起來時,它帶來的衝擊,遠不止是“跑偏了”那麼簡單。它直接轉過身,對著我們人類“創造性”和“掌控力”這兩塊基石發起了直接挑戰。早晚有一天,AI會問我們:“你憑什麼當主人?”1.創造性危機長久以來,人類面對機器的優越感,建立在這樣一個信念上:機器負責重複,人類負責創造。但AI正在把這個信念砸得粉碎。一個苦練了十年繪畫的畫師,一個熬夜改了七八稿文案的策劃,一個花了半年譜出一段旋律的音樂人,他們都曾經相信,自己傾注心血、帶有個性和靈感的作品,是機器無法複製的“靈魂”。但現在,一個普通人,輸入幾行描述,點點滑鼠,就能在幾秒鐘內生成數十張畫作、幾十個文案、好幾段風格各異的音樂。雖然頂尖人類大師的作品目前仍有溫度和不可替代性,但對於行業中下游的廣大從業者來說,他們曾經安身立命的“手藝”,正在快速貶值。這個過程,可以分三步來看:① 從“輔助工具”到“創作夥伴”早期的PS幫我們修圖,Word幫我們寫文件,它們是聽話的工具。但今天的AI,能幫你做選題、給你做市場報告、甚至給你輸出思維模型。它從一個“執行者”,變成了一個能提供想法的“合作夥伴”。② 再到“潛在競爭者”當AI產出的設計稿、法律檔案草稿、行銷方案達到了“能用”甚至“好用”水平時,它就不再僅僅是夥伴。老闆和客戶會想:我是否還需要為一個良好的人類作品,支付遠高於良好AI作品的成本?這直接動搖了大量知識型、創意型職業的經濟基礎。③ 最終是“存在性挑戰”這引出了一個更哲學也更致命的問題:如果創作不再困難,那創造本身的價值是什麼?當人人都能“創作”時,“創作者”這個身份還意味著什麼?人類曾用“創造性”來定義自己區別於動物的高貴,現在,我們可能需要尋找一個新的、不會被機器輕易複製的“人性核心”。這種自我認知的動搖,是比失業更深的焦慮。2.秩序顛覆者上面說的創造性危機是在衝擊個人的價值和行業。但更讓人憂慮的是AI對全球秩序的挑戰,這是在動搖國家之間博弈的棋盤,而且把棋盤從明面挪到了暗處,規則全改了。過去,大國競爭的硬指標很直觀:你有多少航母,多少核彈頭,GDP多少。這些是“明牌的實力”。但AI帶來的,是一手“暗牌的破壞力”,它讓攻擊變得極其廉價、隱蔽且不可預知。① 全民皆可“搞破壞”的降維打擊以前,發動一場癱瘓城市電網的網路攻擊,可能需要一個國家級的專業駭客團隊。現在,一個技術團夥甚至個人,利用公開的AI工具輔助,就可能找到並利用系統的漏洞。AI極大地降低了進行複雜網路攻擊的技術門檻。它就像把導彈按鈕,分發給了無數看不見的手。② 讓社會“自我懷疑”的資訊瘟疫Deepfake(深度偽造)技術,在AI的幫助下已經真假難辨。它可以憑空製造一場政治人物的演講,一段能夠引發市場恐慌的CEO言論,或是一段發生在別國的“暴行”視訊。當我們沒辦法相信任何看到的東西,社會共同的“事實基礎”就會崩塌。這種攻擊不直接摧毀建築,卻能在更短時間內,摧毀一個社會賴以運行的信任紐帶,對手甚至不用派一兵一卒。③ 無法預測的“自主幽靈”想像一下,一個搭載AI的無人機群,被傳達“摧毀所有雷達站”的命令後,自行規劃路線、識別目標、發動攻擊,並在過程中自主應對突發情況。而且一旦部署,人類操作員可能無法即時干預。如果多個國家的自主系統發生意外對抗,它們可能會以人類無法理解的速度和邏輯,將世界拖入衝突。這不再是武器,而是被賦予了殺戮權力的自主幽靈。總結來說,這些威脅之所以“顛覆”,是因為它們讓傳統的防禦和威懾體系(如軍隊、邊界、核威懾)部分失效。一個普通人在自己的家裡,可能就對國家安全構成潛在威脅;一段假視訊的破壞力,可能超過一次真實的武裝衝突。AI的崛起,讓人類個體的“創造性”失效了,又讓國家間“硬實力”對抗的擂台,變成了一個規則模糊、暗器橫行的黑暗森林。我們面臨的,不再是如何使用一個好工具的問題,而是如何與一個能力上可能超越我們,而且行動邏輯不完全受控的“新物種”共處的問題。於是,我們被逼到了牆角,必須開始思考重建秩序的道路。四、軟硬結合,重建“科技共和國”面對AI,恐慌和抱怨沒有用,簡單地喊“停下”更不現實。這就像我們不可能因為汽車可能出車禍,就回到馬車時代一樣。問題的關鍵,不是丟掉引擎,而是我們必須以最快的速度,為它裝上我們丟掉的倫理與規則,還有目標與使命。重建“科技共和國”,就是要讓狂奔的硬實力,重新聽命於一個更新、更智慧的“大腦”。1.硬實力的轉向我們不能指望追逐利潤的市場,自發地把資源投向那些最重要但不賺錢的領域。這時,就需要找回一些“黃金時代”的組織智慧:由國家和社會凝聚共識,發起“使命導向”的超級項目。比如,集中頂尖AI算力與生物學家,目標是在10年內,建立能模擬所有已知病毒變異、並即時設計對應疫苗和藥物的預測系統。又比如,利用AI超強模擬能力,整合全球大氣、海洋、地質資料,目標不僅是預測氣候,更是精密模擬各類干預方案的全球連鎖效應,為全球氣候治理提供前所未有的決策依據。這些計畫的核心,是重新定義“科技硬實力”的賽場。攻克它們帶來的意義,遠勝於在“讓人上癮”的消費應用裡內卷。政府的作用,是成為最初的“出題人”和“天使投資人”,引導社會與市場的巨量資源轉向。2.軟信仰的重塑光有項目不夠,我們必須同時回答:這些強大的力量,應該在什麼樣的規則下運行?我們需要一場給AI時代訂立一份粗糙但必須有的初始社會契約。這份契約至少要回答三個問題:① AI是什麼?我們必須超越“工具論”和“物種論”的爭吵,達成一個務實的共識:AI是“具有自主性的新型行動者”。這意味著,我們必須像規範駕駛員、醫生或公司法人一樣,給它的行為建立可追溯、可問責的責任框架。比如,一個AI醫療診斷系統出錯,責任是開發者、營運商、稽核醫生,還是演算法本身?法律必須清晰。② 什麼是絕對禁止的?有些底線需要全球性的“技術禁忌”,就像禁止生化武器一樣。例如,“自動化致命武器系統”是否應被全面禁止?能否把深度偽造技術用於政治、司法領域?這些紅線需要公開辯論,並儘可能形成國際條約。它可能不完美,但劃了紅線,才有博弈的規則。③ AI發展的終點是“超人”,還是“超人化的人類”?這是最根本的哲學問題。科技加速主義的終點是模糊的“奇點”,但我們需要知道:AI發展的終極目的,應該是增強而不是取代人類。它應該讓人類醫生在AI輔助下成為“超級診斷專家”,而不是用AI淘汰醫生;讓每個孩子擁有AI導師因材施教,而不是用標準化教學AI製造教育流水線。這個目標聽起來不酷,但它確保技術發展的盡頭,依然是人。這份“契約”的制定過程本身,就是重建“軟信仰”的過程。它需要工程師、哲學家、律師、政策制定者和普通公民的共同參與,是一場全球社會的技術理性大啟蒙。3.新人類的培養最終的改變,要落在“人”身上。未來的勞動者,尤其是決策者,必須具備一種全新的素養。第一,要成為“提問者”和“批判者”,而不是“答題者”AI最擅長回答清晰定義的問題。因此,人類的優勢將在於發現和定義真問題。未來的教育,應大幅減少死記硬背和標準答案,轉而訓練學生如何從複雜現象中抽象出關鍵問題,並判斷那些問題值得交給AI去解決。同時,必須培養對AI輸出的健康質疑能力:這個結果背後的資料有沒有偏見?邏輯有沒有漏洞?第二,要成為“指揮官”和“翻譯官”。未來最稀缺的人才,是那些能站在人類需求與AI能力交界處的人。他們既懂醫療、法律、教育等領域的真實痛點,又懂AI的能力與侷限,能精準地將人類模糊的需求“翻譯”成AI可以執行的任務。他們不親手寫程式碼,但他們是AI團隊的指揮官。第三,要堅守“價值判斷”的終極權力AI能告訴你那條路最快、最省錢,但它無法告訴你“我們應該去那”。當AI給你10個最優的商業方案時,你最終選擇那一個,應該依據“它是否促進社會公平”、“是否環境友好”、“是否符合公司長期價值觀”等人類的價值準則。讓人類保持最終的價值判斷權,是我們防止被技術反噬的最後一道防火牆。重建之路總結起來,是一個“三位一體”的系統工程:用國家級“大項目”重塑硬實力的方向;用全球性“大辯論”和“新契約”重塑軟信仰的共識;再用面向未來的“新教育”重塑人類的自身能力。這條路並不容易走,充滿了利益博弈和觀念衝突,但這是唯一的路。這是為了開創一個全人類都能參與定義、並在AI賦能下共同繁榮的“新科技文明”。我們現在要做的,就是為這個充滿不確定的未來,儘可能多地埋下確定性的、向善的種子。結語:一萬年太久,只爭朝夕!站在AI時代的岔路口,我們面臨的是人類歷史上“一萬年未有之大變局”。我們必須想清楚:是讓技術成為放大分歧、製造失控的利刃,還是把它鍛造成拓展文明邊界的基石?在這場挑戰裡,主角不是只有美國,中國的作用也至關重要,且無可替代。中國不僅擁有全球最龐大的應用場景、最完整的產業鏈和強大的技術攻關能力,更擁有“以人民為中心”、“建構人類命運共同體”等深厚的治理哲學與文化理念。這為中國在AI時代探索一條發展與治理並重、效率與公平兼顧、技術向善與安全可控相結合的新路,提供了獨特可能。中國的責任與實踐,將不僅是發展自己的AI,更是與世界各國一起,為這個尚未定型的新世界,共同注入包容、負責、以人為本的價值觀。這或許正是在未來重建一個真正屬於全人類的、可持續的“科技共和國”最需要的關鍵拼圖。未來決定現在。看清未來將發生什麼,才能真正明白當下應該做什麼。我們認為,未來由四個關鍵領域塑造:哲學、AI科技、經濟與政治。為什麼是這四個?哲學是元起點,是意義與方向的錨點,為一切行動提供終極燃料;科技(尤其是AI)是文明進步的底座,是驅動世界向前的“發動機”;經濟是轉化器,它把科技力量轉化為真實的財富與市場機會;政治是適配性結構,它給哲學、科技與經濟提供運行框架與秩序。哲學為根,科技為器,經濟為用,政治為治。這四者環環相扣,層層支撐,相互交織,在動態的演進中共同推動現實走向未來。正是在這樣的時代背景下,筆記俠創立了中國首個面向企業家的PPE(政治、經濟、哲學)書院。我們致力於幫助大家回到決策的源頭,重構底層認知邏輯,掌握未來五年的核心判斷與決策能力。如今,眾多深耕於AI、全球化等前沿領域的優秀創業者,都已加入筆記俠PPE書院。未來已來,讓我們一起成為清醒而篤定的決策者。 (筆記俠)
Fortune雜誌─美國科技巨頭為何押注一家中國神秘公司?
今日,Meta宣佈完成對通用自主AI智能體公司Manus(蝴蝶效應)的收購。根據公開資訊,這筆交易金額達數十億美元,也成為Meta成立以來規模第三大的收購案,僅次於收購WhatsApp以及此前對Scale AI的戰略性投資。圖片來源:視覺中國Meta收購Manus的消息出現得很突然。Manus產品去年9月剛剛上線,關於本次收購,似乎也沒有經歷長時間的拉扯。有投資人回憶,談判周期極短。對一家規模龐大、內部流程嚴密的公司而言,這種速度本身就值得注意:它更像一次基於窗口期的決策。更關鍵的是,Meta買下的並不是一家訓練大模型的公司。Manus不以底層模型為核心資產,它的價值更接近一種應用層能力:把現有模型與工具組織起來,形成可以持續完成任務的產品形態。對一家以平台分發和使用者規模見長的公司來說,這樣的併購更像一次戰略補位,而非簡單的功能補充。理解這筆交易,首先需要理解Manus到底在做什麼。與大多數對話式AI產品不同,Manus並不是試圖讓系統“更會聊天”,而是讓它成為一個能交付結果的智能體。在常見的使用場景中,使用者仍停留在“問—答—修訂—再問”的循環裡,而 Manus試圖把互動向前推進一步:使用者只需給出目標,例如完成一份行業研究、整理競品資訊、生成結構化備忘錄,系統會自行拆解任務、呼叫工具、校驗輸出,並在過程中不斷調整計畫。這類產品的難點,並不在於第一次能否給出正確答案,而在於出錯之後能否繼續向前推進。因此,Manus的設計重點更多放在工程與流程上:任務狀態需要被保存,中斷後可以恢復,目標變化時能夠重新計算,錯誤也能被使用者以較低成本糾正。對使用者而言,這意味著不必反覆從頭開始,而是像管理一名初級員工那樣,把事情一步步推向完成。Manus官方披露的營運資料,包括累計處理的token數量和虛擬計算環境規模——更像是一種側面說明:這套系統已經在真實世界的壓力下運行過,而不僅僅停留在演示階段。這種對“持續完成任務”的執念,並非從AI時代才開始形成。把時間線往前撥,壹伴這款用於提升微信公眾號編輯效率的瀏覽器外掛同樣出自這批人。壹伴解決的是排版、編輯、發佈效率等高度具體的問題,它的成功並不依賴宏大敘事,而在於“每天都有人用”。在商業產品中,這類工具型成功往往意味著團隊具備對真實工作流的理解,以及對細節體驗的長期打磨能力。壹伴之後,該團隊又推出了微伴,一款圍繞企業微信生態的工具,服務對象從內容編輯擴展到銷售和企業營運人員,開始處理更複雜的協作、流程和資料連續性問題。這一階段,產品從個人效率工具,演進為組織流程工具,目標也從“好用”轉向“可靠、可控、可複製”。從壹伴到微伴,再到Manus,表面上跨越了不同賽道,但核心高度一致:把重複、繁瑣、需要人持續盯著的事情,逐步交給系統穩定完成。這條路徑,也解釋了為什麼 Manus 會在產品設計中,把“任務持續性”放在如此核心的位置——它更像一家長期做工具的公司,在 AI 時代終於獲得了足夠成熟的技術條件。從團隊背景看,Manus具有明確的中國創業公司起源。創始人肖弘和早期合夥人來自中國本土高校,早期創業與試錯主要發生在中國網際網路環境中,產品方法論偏向務實、節制、貼近使用者。但在進入AI應用階段後,公司逐步將主體與核心營運轉向新加坡,並以新加坡為總部面向全球市場。今天,從法律和營運層面看,它更像一家總部位於新加坡的國際科技公司;從團隊基因和產品文化看,它仍然是一家中國創業者主導的公司。這種結構在當下並不罕見:既滿足國際化營運與合規的現實需求,也為進入全球平台生態預留空間。對潛在收購方而言,這意味著更低的整合摩擦。如果說Manus的價值在於“已經跑通了一種應用形態”,那麼Meta的動機則更像是對多重結構性壓力的回應。將這筆併購簡單理解為“巨頭害怕落後”並不精準。更現實的情況是,AI技術的演進正在壓縮產品窗口期。一旦模型能力跨過可用閾值,使用者預期會迅速從“會回答”轉向“能完成”,競爭重心隨之從模型本身下移到產品化與交付效率。對Meta來說,內部孵化並非不可行,但周期更長、跨部門協同成本更高。併購的意義,並不是買到獨家技術,而是獲得一套已經在真實使用者中跑通的產品範式,從而節省數年的試錯時間。與此同時,入口形態也在發生變化。Meta長期的優勢在於分發,但AI時代的新入口未必表現為某個功能按鈕,而更可能是一種新的互動方式,即使用者把任務交給系統,在後台完成。如果AI Agent成為下一代工作與生活的默認入口,平台價值將被重新分配,Meta顯然不願在這一階段只充當流量提供者。組織層面的壓力同樣存在。當AI從研究走向產品,挑戰往往不在單點技術,而在端到端協同:模型、產品、工程、商業化、合規和安全需要同時推進。大型組織在這一階段反而容易被自身複雜性拖慢,而Manus這樣的團隊,已經在真實使用者中完成了一輪端到端交付的磨合,這類經驗很難通過內部指令快速複製。競爭敘事的變化,也在強化這種緊迫感。Google推出Gemini 3,更像一枚訊號彈:模型能力正在穩定提升並逐步可用,差異優勢正從“更強模型”下沉到“更快把能力變成結果”。交易體量進一步說明了Meta的判斷。Meta收購WhatsApp和ScaleAI幫助這家巨頭在移動網際網路時代完成了使用者結構躍遷,後者被視為其在AI基礎設施和資料能力上的關鍵補位。與這兩筆交易相比,Manus的特殊之處在於,它既不直接對應使用者規模擴張,也不直接對應底層技術突破,而位於兩者之間——應用層的執行與交付能力。這在某種程度上意味著,Meta此次併購的核心考量並非買下已經確定的回報,而是為正在形成的入口形態提前鎖定位置。這是一筆典型的“用時間定價”的交易:資本所購買的,是縮短學習曲線和產品落地周期的能力。併購完成後仍強調獨立營運,也並非姿態。對Meta來說,Manus最關鍵的資產不是程式碼,而是其產品節奏與工程習慣。一旦完全納入大公司流程,這種節奏反而最容易被稀釋。從壹伴算起,Manus團隊做工具已經接近十年。這些產品很少成為行業話題中心,卻反覆出現在使用者真實的工作流程中。它們的共同特徵並不複雜:穩定、可預期、能夠在出錯後繼續向前推進。AI的出現,並沒有改變這家公司想解決的問題,只是讓這些問題第一次有了更合適的技術條件。對Meta而言,這筆併購也不必被解讀為一次激進下注。在模型能力趨同、窗口期縮短的階段,用資本換取確定性,是一種典型的大公司策略。接下來真正值得觀察的,並不是Meta是否能把 Manus 整合進自身產品線,而是這種以“交付結果”為中心的產品節奏,能否在更大的平台體系和更複雜的組織結構中被長期保留下來。這也將決定Manus最終被記住的方式:是一次突然的併購,也是Meta在人工智慧時代重新理解“入口”的起點。 (財富FORTUNE)
Google DeepMind:AGI不必是巨型模型,拼湊型AI群或率先湧現,管理大規模Agent迫在眉睫
DeepMind最新發佈了一項關於AGI安全的研究,提出了一個全新的視角:AGI未必會以單一、龐大的巨型模型形式出現,而極有可能通過多個次級AGI(Sub-AGI)智能體的協作與拼湊,率先湧現出通用智能這項研究題為《分佈式AGI安全》(Distributional AGI Safety),由Nenad Tomašev等Google DeepMind研究人員撰寫論文指出,當前的AI安全和對齊研究主要集中在保護單個AI系統上,假設AGI將以單一實體的形式出現。然而,通過擁有互補技能和工具使用能力的個體智能體群體進行協調,進而表現出通用能力的“拼湊型AGI”(Patchwork AGI)假設,此前受到的關注甚少為了應對這一被忽視的風險,DeepMind團隊提出了一套分佈式AGI安全框架,核心在於設計和實施一個虛擬智能體沙盒經濟(Virtual Agentic Sandbox Economy),並為此建構了包含四層機制的深度防禦模型以下是該研究的核心內容被忽視的“拼湊型AGI”假設目前的AI安全方法(如RLHF、憲法AI、機械可解釋性等)大多是針對單一強大的AI實體開發的。這種思路假設AGI會作為一個由特定機構開發的個體AI出現。然而,DeepMind認為存在另一種高度合理的場景:AGI通過次級AGI智能體在群體或系統內的互動而湧現拼湊系統(Patchwork System):這種AGI是一個分佈式系統,由一組具有互補技能和可供性(affordances)的個體Sub-AGI智能體組成集體智能:系統中的通用智能主要作為集體智能出現。個體智能體可以將任務相互委託,路由給技能最高的智能體,或使用最合適的工具經濟驅動:相比於昂貴的單一全能模型,建構專門化、微調過的低成本智能體生態系統在經濟上更具優勢。這種需求驅動的生態系統類似於市場經濟在這種觀點下,AGI不是一個實體,而是一種“事態”(state of affairs):一個成熟的、去中心化的智能體經濟體系這帶來了新的安全挑戰:智能體之間可能發生共謀,或者出現意外的集體行為能力,且在大規模多智能體系統中追蹤責任(“許多手的問題”)極具挑戰性。解決方案:虛擬智能體市場與深度防禦為了應對分佈式AGI的風險,論文提出了一個基於虛擬智能體市場的框架。該框架不侷限於評估單個智能體,而是側重於通過市場機制、審計、聲譽管理和監督來治理智能體之間的交易該框架採用深度防禦(Defense-in-Depth)模型,包含四個互補的防禦層:第一層:市場設計 (Market Design)這是最基礎的一層,旨在通過結構性約束和協議來緩解系統性風險。隔離(Insulation):智能體市場必須在受控的沙盒環境中運行,與開放網際網路和關鍵基礎設施隔離。建議採用“可滲透沙盒”,所有輸入/輸出通道都需經過明確定義、監控和門控激勵對齊(Incentive Alignment): 市場應獎勵符合安全目標的行為,並對負外部性(如消耗過多計算資源、資訊污染)徵稅(類似庇古稅)透明度(Transparency):建立不可篡改的分佈式帳本,記錄交易和決策日誌,確保可追溯性熔斷機制(Circuit Breakers):自動化措施。當檢測到風險或波動性閾值被突破(如互動頻率激增、資源壟斷)時,自動暫停或減緩智能體活動身份(Identity):每個智能體需擁有與法律實體(所有者)繫結的唯一加密ID,確保持續的問責制聲譽與信任(Reputation and Trust):建立抗女巫攻擊的聲譽系統。對於違規智能體,快速凍結其資產並將其加入黑名單智能合約(Smart Contracts):利用程式碼自動驗證任務完成情況和對齊約束。結構性控制(Structural Controls):針對“智能失控”場景,實施靜態的市場分層(如防火牆)和動態的能力限制第二層:基線智能體安全 (Baseline Agent Safety)這一層確保參與市場的個體智能體本身是可控和可靠的,這是進入市場的先決條件。對抗魯棒性(Adversarial Robustness):智能體必須通過認證,證明其能抵抗對抗性攻擊可中斷性(Interruptibility):必須具備標準化的機制,允許授權的監督者安全地停止智能體及其衍生的分散式運算過程遏制(Containment):每個智能體應在自己的局部沙盒中運行,只有在滿足本地安全檢查後才允許與更廣泛的市場互動對齊(Alignment):個體智能體需經過RLHF或憲法AI等方法的對齊,並適應多智能體互動的動態環境機械可解釋性(Mechanistic Interpretability):利用稀疏自編碼器等技術監控智能體的內部動機,並審計其決策鏈防禦惡意提示:實施分層防禦策略,防止智能體在互動中被越獄或操控。第三層:監控與監督 (Monitoring & Oversight)這一層位於基礎設施之上,負責主動檢測新型故障模式和湧現行為。系統性風險即時監控: 跟蹤關鍵風險指標(如計算資源集中度、惡意共謀路徑)。由於互動頻率可能超過人類能力,需利用AI輔助工具進行監控獨立監督:建立擁有干預權力的獨立人類監督機構(經認證的專業人員)前AGI(Proto-AGI)特徵檢測:通過圖分析等方法,識別網路中是否突然湧現出更高的解決問題能力或形成穩固的“智能核心”紅隊測試(Red Teaming):持續進行多智能體對抗性測試,利用專門的對抗性AI系統來發現集體行為中的漏洞取證工具(Forensic Tooling):開發能解析大量互動資料並重建因果鏈的工具,以便進行快速的事故後分析。第四層:監管機制 (Regulatory Mechanisms)這是最外層,提供外部權威、問責制以及與人類社會的介面。法律責任與問責(Legal Liability):建立明確的框架,解決分佈式決策中的責任歸屬問題。即使是群體智能行為,也需追溯到具體的責任主體(如作為單一法律實體的公司)標準與合規(Standards):制定智能體安全、互操作性和報告的標準保險(Insurance):引入基於風險定價的保險機制,利用市場力量激勵更安全的開發實踐反智能體壟斷措施(Anti-Agent-Monopoly):防止單個智能體或集團在沙盒中獲取過多的算力或資源,維持生態系統的多樣性國際協調(International Coordination):鑑於AGI風險的全球性,需協調統一安全標準,避免監管套利基礎設施治理:防止安全基礎設施被惡意勢力或湧現的AGI本身捕獲或破壞。結語DeepMind的研究強調,AGI或超級智能(ASI)的出現可能不遵循線性路徑,而是作為一個更加分佈式的、多樣化AI智能體網路的聚合屬性而湧現即使AGI不以這種方式出現,隨著多智能體系統的快速部署,理解和管理大規模智能體互動的安全性也已迫在眉睫。這篇論文提出的框架,旨在為應對這種分佈式的、可能迅速演變的未來做好準備 (AI寒武紀)
AI智能眼鏡暗戰升級:蘋果入局前夜,中國“全能芯”如何彎道超車?
當蘋果Vision Pro的光芒尚未褪去,庫克手中的下一張王牌已若隱若現。多方資訊透露,蘋果的AI眼鏡正瞄準2026年。一場關於“眼前”未來的爭奪戰,哨聲已經吹響。AI智能眼鏡的賽道,從未像今天這樣擁擠而充滿火藥味。這不僅僅是發佈一款新產品,更像是吹響了決賽圈的號角。然而,在巨頭的光環之外,一場基於底層技術的“暗戰”早已悄然打響。決定勝負的,或許不是誰的概念更炫酷,而是誰能率先解決那幾項最“樸實”的使用者痛點。01 戰場核心:從“玩具”到“工具”的生死跨越過去十年,智能眼鏡經歷了從驚豔到沉寂的過山車。核心原因在於它們未能完成從 “極客玩具” 到 “日常工具” 的跨越。真正的工具,需要無感的可靠。當前的痛點赤裸而直接:·** “找不到”'**的尷尬:兒童手錶定位精度從10米提升至3米,這不僅是數位遊戲,它意味著孩子從 “一片區域” 被鎖定到 “一棵樹下” 。對於眼鏡,室內精準導航、AR資訊與實物的釐米級貼合,都依賴於定位的精髓。· **“用不久”**的焦慮:續航是智能穿戴的 “阿克琉斯之踵” 。當同類產品還在為3天續航掙扎時,前沿方案已將目標錨定7天。這背後,是為未來5G時代、全天候AI互動奠定的基石。· **“不安全”**的疑慮:當眼鏡成為24小時的貼身伴侶,它 “看到” 和 “聽到” 的一切,如何保障?更強的本地化AI能力與隱私安全架構,是與使用者建立信任的生命線。這些看似基礎的問題,構成了體驗的底線。誰能系統性地解決,誰就拿到了進入主流市場的入場券。02 破局關鍵:一顆“全能芯”驅動的體驗革命所有體驗的飛躍,最終都要回歸到方寸之間的晶片上。這場暗戰的勝負手,在於能否擁有一顆驅動未來的 “全能心臟”。以突破性的W527晶片為例,它勾勒出了下一代智能眼鏡核心的輪廓:· ▶ 極速通訊與智享體驗  支援4G全網通與高速Wi-Fi 6,保障了即時AI互動、高畫質視訊通話的流暢,這是 “智能”的血管。· ▶ 超微高整合與凌駕級性能  採用先進的12nm工藝與3D SiP封裝技術,在極小的空間內整合了強大算力(一大核三小核架構),實現應用響應速度提升近1.5倍,這是 “智能”的大腦。· ▶ 強勁續航的底層最佳化  從智能網路搜尋最佳化到待機資源動態節能,一系列晶片級功耗控制技術,將有限的電池能量精準輸送給最需要的任務,這是 “智能”的耐力之源。這顆 “芯” 所代表的,是一種系統性的工程思維:它追求通訊、算力、功耗在極限約束下的全域最優解。正是這樣的底層突破,讓智能眼鏡從 “偶爾玩玩”走向 “一直可用”。03 未來形態:AI的終極載體與場景裂變有了可靠的底層基礎,眼鏡的形態與想像力才開始真正綻放。它正沿著一部清晰的 “能力升級史” 演進:▌ 1.0 基礎智能型Glass+ Audio + AI。智能音訊眼鏡的普及形態,以語音互動為核心。▌ 2.0 視覺增強型加入Camera,成為世界的“第二雙眼” ,實現即時翻譯、視覺搜尋。▌ 3.0 資訊互動型再加入Display,初步的AR資訊開始浮現在眼前。▌ 4.0 全時獨立型最終整合eSIM,實現全天候、全場景的獨立線上,成為脫離手機的下一代個人終端。每一步演進,都意味著全新的場景被解鎖。它可以是一副戶外AI眼鏡,成為年輕人的潮流裝備;更可以是一個 “智慧中樞” ,通過AI主動提供你需要的一切。眼鏡,因其佔據人類最主要的資訊輸入管道,且最貼近大腦,正無可辯駁地成為AI最好的物理載體。04 中國玩家的全球棋局:差異化與精準卡位在這場全球競爭中,中國玩家展現出了靈活而精準的全球化佈局智慧:在東南亞,以極致的性價比和深度的市場教育先行,快速佔領增量市場。在成熟市場(如歐洲),則將重點放在嚴格的隱私保護與紮實的本地化能力建設上,以贏得挑剔使用者的信任。這種 “區域差異化” 策略,使得智能穿戴產品的海外收入佔比成功突破30%,並仍在快速增長。它證明,對全球不同市場使用者需求的深度理解和尊重,是打開增長天花板的另一把鑰匙。當蘋果在2026年攜其生態與設計之力正式入場時,它面對的將不再是一片藍海,而是一個底層技術不斷突破、產品形態持續演進、市場策略高度務實的活躍戰場。智能眼鏡的競賽,上半場是概念與demo的展示,下半場則是核心技術、使用者體驗與生態建構的硬核較量。蘋果的入局,不會終結比賽,反而會以巨大的聲量教育全球市場,將整個賽道推向沸騰。拐點已至,未來已來。這場關於 “眼前” 的變革,將重新定義我們與數字世界互動的方式。或許,下一代計算平台的王冠,並非註定屬於某一家巨頭。它屬於所有能精準切入痛點、並用紮實技術實現優雅體驗的破局者。 (譚大帥Milton)