#勞動
解構“斬殺線”討論:2025年——中國對美國的祛魅之年
目錄一、“斬殺線”是個什麼話題?二、如何討論這個問題?人們真的關心這個問題?三、回顧一下對“斬殺線”的最初討論四、三條“貧困線”1. 三條線之一:14萬美元的“偽貧困線”2.三條線之二:ALICE閾值——最貼近“斬殺”的概念3.三條線之三:流浪漢線——真正的“斬殺”在此五、是社會問題,還是個人責任?——以亞裔為例六、美國人:不同的物種?那個“美國人”?七、一點小結八、美國“斬殺線”為何在中國成為熱度話題:觸動了那根神經九、2025年:中國對美國的祛魅之年一、“斬殺線”是個什麼話題?有朋友問我對時下網上流行的“斬殺線”討論的看法。我問討論什麼。是討論美國是否存在“斬殺線”麼?什麼是“斬殺線”?那條線才是“斬殺線”?何為“斬殺”?誰斬殺誰?我不是研究這個領域的專家(包括學者、調查記者),也沒有這樣的生活經歷。這個問題無從討論。而我發現大部分人就算關注這個問題,對上述情況也說不清,他們只是在傳遞一個朦朧的概念,即美國中低收入階層的一個生活狀態。實際上,我們不需要真的討論“斬殺線”,而是可以關注,這是2025年末出現在中國部網路絡上的一個現象。這個討論很快就會消失。但是“斬殺線”這個概念因為記憶點太強,很可能會因此留下來,進入公眾話語,成為用來描述美國社會或類似思想的一個雖然不太嚴謹,但是可以傳遞資訊的概念。而如果要先討論一下美國經濟社會問題的話,實際上,自2016年川普贏得大選以後,美國中低收入階層的境遇就已經成為一個“顯學”,國外出版了大量著作,中國也大量引進中文版。最有名的單一一本書,其實不是研究書籍,而是一本自傳——副總統JD·范斯《鄉下人的悲歌》。這本書於2016年在美國出版,2017年出版中文版。關注美國的人很多都早就讀過的,裡面講了大量對中國人來說駭人聽聞的“白屌絲”生活:毒品、酗酒、暴力、離異。這些內容不僅讓中國人感到吃驚,而且讓美國精英(本文所指美國“精英”,均指美國最富裕的20%左右人群,或稱“上層中產”及以上)也感到吃驚。他們看待這些白人藍領就和看待另一個世界的人一樣。《鄉下人的悲歌》也被精英用作瞭解川普現象的參考讀物。彼得·蒂爾在那個時候發現了JD·范斯,並助力他走向政壇,成就了他的今天。(目前,JD·范斯是最有機會贏得2028年大選的潛在候選人,並且已經顯現出連干兩屆的苗頭)。另一本直接相關的書是2016年在美國出版的《Evicted》——美國社會學家馬修·德斯蒙德(Matthew Desmond)通過深入的田野調查,跟蹤記錄了威斯康星州密爾沃基市八個貧困家庭作為租戶被業主驅逐的經歷。他用真實的案例向人們展示:房屋驅逐不只是貧困的結果,也是加劇貧困和不平等的直接原因,因為一旦脫離了住所,個人和家庭就會跌落陷阱,很難再去翻身。這本書包含了大量真實的故事,展現了美國城市底層租戶的生存困境,幫助瞭解他們是如何跌落到這個狀態的,並且採用什麼樣的方式去自救,並且得到了來自家庭、社區、政府的那些幫助。這本書所探討的住房不穩定對家庭、兒童和社區的毀滅性影響,實際上正是近期網上討論的所謂“斬殺”的效果。這本書獲得了2017年普利策非虛構文學獎等多項大獎,被譽為報導美國貧困問題的當代經典之作。早在2018年7月,就由廣西師範大學出版社出版了中文譯本《掃地出門》。順便說一個,有一個視訊號推薦在外網的朋友有興趣可以關注。(中國也有搬運的)一個攝影師採訪美國各種貧困人群和邊緣人群,講述他們的真實生活。很多已經屬於所謂的“斬殺線”之下的人。精神不正常、採訪時處於嗑藥狀態的不在少數。過去十年,這類題材的東西出現了許多,這是伴隨川普和MAGA運動的崛起,貧富差距的不斷加劇,可負擔性問題越來越突出,以及使得這些問題變成最重大的社會問題,並演變為最重要的政治主題——從2024年大選,到2026年中期選舉,都將是主題——所以相關研究可以稱之為“顯學”。住房當然是一個領域(《掃地出門》),但更大的一個垂直領域是和成癮藥品/毒品有關的。大多數出版物都是由學者和知識分子(主要是社會學家)和深度調查記者在大量田野調查和研究基礎上寫出來的——研究這樣的問題,你必須真正下到基層去做研究,用很長的時間追蹤一定數量的個案,否則就不可能瞭解他們的生活狀況,不可能瞭解他們所處的境遇,不可能瞭解他們面臨的選擇及做出的選擇。不要說對於坐在大洋彼岸家中的中國人來說這是不可能的。對於美國精英來說也很困難。他們也不瞭解底層的美國,不瞭解“未受教育”的美國、不瞭解生活貧困的美國。也是由於這種階層隔閡,他們很難瞭解川普現象及其背後嚴重的經濟社會問題。美國成了兩個美國,甚至更多的美國,不同人活在不同的“泡泡”裡,社會割裂,政治撕裂。也是這樣,人們有了閱讀瞭解的需求,所以學者才需要去做研究,把社會問題寫成書。當然,真正花工夫去研究這些問題的人還是極少數。實際上我們能看到,直到2024年大選,民主黨上層仍然是不親民的,其在大城市的上層中產基本盤是不親民的,因為他們是一個永久自循環的“泡泡”。由於他們仍然不瞭解貧困群體,也就仍然無法和他們建立心理聯絡和政治聯絡,所以他們註定丟掉大選。按照今天中國網路話語的通俗理解,不妨這麼認為:JD·范斯之所以能夠擁有這樣的政治基礎,就是因為他是從所謂的“斬殺線”以下爬上來的。二、如何討論這個問題?人們真的關心這個問題?聊到這裡,引發了幾點問題。第一,這個問題並不是我們可以討論的問題。所有的個人經歷都屬於軼事層面的“個案”(anecdote),這不是真正的社會調查,沒有意義。我們也不用看別人提供的個案和軼事。一個美國人如果通過若干在中國經歷的個案,想推論整個中國的情況,也會讓我們覺得不公。如果純粹只是為了獵奇,為了娛樂價值和情緒需要,看一看當然沒有關係的,但需要知道,這些都是軼事,不是嚴肅研究。事實是,我們坐在大洋彼岸的家中,不到一線去做田野研究,或者說不急於更加專業的研究,是無從討論這樣的問題的。不要說中國,就是美國的城市中產精英也不瞭解他們底層人民的生活。實際上,對於中國大城市中產精英來說,有多少人瞭解身邊的普通勞動者?他們的生活狀態,他們的生活境遇,他們面臨的選擇?恐怕是不瞭解的。實際上不瞭解也是正常的,並不是錯,但不瞭解就不要假裝瞭解。所以第一條是,沒有調查就沒有發言權。只要這個問題我們不夠瞭解。就不是我們能夠討論的問題。所以有人問我,你要不要聊兩句,我首先表示我對這個問題並不那麼瞭解。不知道要聊什麼,不認為我應該發表意見。我說,過去十年出了這麼多的書,都有中文的,一大堆講美國窮人的,你要不要看一本。然後這馬上就引出了第二個問題——第二,中國人根本就不關心美國的貧困階層。當你建議別人去看研究美國貧困問題的出版物時(實際上都是一些很有閱讀價值,包含大量真實案例的田野研究類書籍),人們就一擺手離場了。是因為沒有時間麼?部分是——誰有時間看這些大部頭。是因為缺乏知識好奇麼?也不是,人們對這些資訊也不排斥,只不過沒有那麼大的興趣要花更多的時間獲取。所以歸根結底在於:這個事情,美國的這些人,他們的境遇,和我們沒有關係。一句話,我們真的操心他們的事麼?他們的生活境遇,他們買不起生活必需品,和咱們有什麼關係?我們操心他們的事情幹什麼?如果你不是一個研究公共政策的,如果你不是一個有無窮知識好奇的知識分子,對於大多數人來說,從個人角度出發,確實沒有理由。實際上,對於中國大城市的中產及以上精英來說,咱們身邊的勞動者,每天經過路過,給你提供的勞動者,你們就真的關心麼?你真的瞭解麼?恐怕未必;你們為他們具體做了什麼?恐怕也沒有什麼。這實際上也是“正常”的,全世界都一樣。所以,不排除會有一點基於同理心的關注,但我們並不真正的關心美國貧困階層的生活境遇和福祉。這也解釋了為什麼過去十年出版了這麼多關於美國貧困的書都沒有掀起一個水花,也解釋了為什麼大多人並不想真的去深究這些問題,在聽到更嚴肅的討論後就會擺手離場。所以,它更多隻是一個網路現象。真正的研究價值和啟示在於,為什麼中國網友(也不是全部網友,可能還是受過較好教育的偏精英人群)會在2025年12月的這個時候,突然如此熱衷地探討這個所謂“斬殺線”的問題。答案也不難猜測,這個話題在合適的時點,以合適的方式出現了。三、回顧一下對“斬殺線”的最初討論在此之前,我們先回頭再看一看“斬殺線”問題本身,從中就可以看出討論的混亂。我認為,討論混亂並不代表水平低,只說明人們並不真的關心這個事,只是“看看熱鬧”。事情的緣起是2025年12月B站UP主“斯奎奇大王”(“牢A”)的視訊系列,以法醫助理視角描述美國底層流浪漢現狀,借用了遊戲術語“斬殺線”比喻,指許多美國人(包括中產)財務脆弱,一旦遭遇失業、疾病、意外等事件,就會引發連鎖反應,比如債務爆棚、信用崩盤、失去住所和工作,迅速墜入貧困,無家可歸,甚至死亡,這是個“死亡螺旋”,難以翻身。裡面傳遞的核心概念是,第一是不可逆轉,一墜到底:只要一旦跌落,就永無翻身的可能。從個案角度看,當然是有這個情況的,但你在任何社會裡都可以找到這個情況。在現實生活裡,美國有信用修復機制、有個人破產保護可幫助豁免債務(非常重要的一個機制)、有慈善援助(民間自發的公益組織非常發達是美國的模式與優勢),也有社區支援。許多人通過重新就業或家庭幫助恢復。無家可歸者確實平均壽命短(可能是3-5年),但最大的歸因是毒品,其次有暴力和疾病,但不是所有跌落者都如此,而且因族裔問題有極大差異——君不見很少見到亞裔無家可歸者?這個問題後面再探討。第二是說成是“系統故意斬殺”,把這種連鎖反應描述成“設計好的連招”,資本主義的“出清機制”。這種說法當然完全是陰謀論,好像這是精英謀劃的一個社會工程或陰謀。把問題歸因到資本主義和精英,隱約地和美國民粹右翼裡“大替代理論”有關聯,但大替代理論強調的是通過族裔、文化和政治上改造美國,而經濟——確實,民粹右翼也認為大企業和大資本在引入非法移民和技術移民以賺取利潤,結果會犧牲美國本土勞動者的利益,驅動或助長問題,但他們並不認為精英在密謀通過故意“淘汰人口”(“斬殺”)的方式去肉體出清底層階層以維護資本主義運轉。你可以想像,這樣的說法頂多會出現在一個帶有濃厚陰謀論和邪教色彩的民粹左翼小眾群體裡。視訊最大的問題是案例選擇性應用以及歸因。例如大量使用引用極端的例子,忽略多數中場有緩衝的現實。缺乏400美元先進去救急的資料是真實的,但也不代表所有人都是一觸即崩的,而且這個問題的族群差異因素極大。中美的差異,部分因為制度,部分因為社會文化和價值觀(例如家庭價值)。這個回頭再說。四、三條“貧困線”在回來探討中國輿論現像之前,可以再看看和“斬殺”相關的美國的三條“線”1.三條線之一:14萬美元的“偽貧困線”第一條線:14萬美元線(四口之家年收入低於14萬美元屬於貧困,深陷“死亡谷”)我們稍微關注一下中國關於“斬殺線”的討論就會注意到,人們會援引11月以來美國的一個熱門話題:美國投資家和財經博主Michael Green在2025年11月發表了文章,提出了一個非常有爭議的觀點,引發了一些傳播和討論(但遠遠談不上是網路現象),尤其因為這個主題和時下最大政治主題——“可負擔性”(affordability)問題相關。Green說美國的貧困線是在1963年設計的,當時美國家庭大約把三分之一的收入花在食品雜貨上。當時的經濟學家把最低但夠用的食物預算乘以三,就大致劃出了一條貧困線——四口之家年收入31,200美元。這個數字當然是經通膨調整的,但貧困線的計算方法六十年沒有更新。Green認為如今食品雜貨價格佔美國家庭開支的比例大幅下跌(他認為只佔5-7%左右),主要開支是住房和醫療。所以要重新計算貧困線,就要根據食品雜貨佔收入比重的資料重新調整乘數。基於5-7%的數字(實際上是一個錯誤的資料),他認為應該將食品雜貨開支乘以16, 最後得出了四口之家年收入14萬美元的數字。他認為這個四口之家14萬美元就是新的貧困線,收入水平低於14萬美元就可能被剔除中產,進入所謂的“死亡谷”。他又對這個貧困線的內容做了一些詮釋,認為14萬美元實際上是一種“社會參與的代價”即“門票”、“入場券”——你要維持一個有尊嚴的體面生活,就需要維持一定的開支。比如說人要衣裝。比如說孩子要上學。比如說你要有智慧型手機和上網費用。比如說你要社交。如果你不為門票付費,那就會被主流社會剔除。【Green文章的中文版在此(《美國人為何覺得自己貧窮?因為他們本來就是》https://t.zsxq.com/LA3Vp)。這裡是財經博主Noah Smith非常好的一篇反駁文章《“14萬美元的貧困線”之說十分荒唐》,從理論和方法論系統批判了Green的說法https://t.zsxq.com/uibZE)】這裡面最大的問題在於,四口之家年收入14萬美元已經超過了美國60-70%家庭的收入水平。按照這個標準,三分之二的美國人陷於貧困。它的爭議點在於,這個14萬美元線和真正意義上的貧困,即難以滿足基本溫飽和庇護,是毫無關聯的——它只是反映了中產階級為維持體面生活所要付出的高昂成本,比如住房、教育、醫療、育兒等的高昂成本——其中甚至包括娛樂(Noah Smith拆解資料,證明Green的方法論裡假設了中產之家訂購Netflix的支出)。確實,“社會參與代價”、“門票”的說法得到了一些大城市中產的認可——他們並不真的“貧困”,甚至不真的瞭解貧困,但這不妨礙他們真的覺得生活壓力極大,無法滿足生活的日常開支與需求(“不可負擔”)。在真正貧困的人看來,這屬於典型的“第一世界煩惱”——第三世界的人因為疾病和戰亂而死亡,比如想一想加薩。第一世界的人則為朋友生日會穿什麼衣服出席,或者送什麼禮物而抑鬱。他們是不是都煩惱?是。但他們遇到的問題是否一樣?不一樣。一切都是相對的。因為你已經生活在這樣的圈層裡,所以你要維持生活,就要付出一定的代價。其實全世界從古到今都是一樣。看巴爾扎克的《人間喜劇》,會給你描述已經家道中落的貴族維持巴黎社交場高昂開支的困難。如果不能維持,就會被剔除這個圈層。他煩惱麼?非常煩惱麼。勞動人民會同情他麼?不會。中國一線城市中產面對的房價、教育、醫療、育兒的焦慮其實是相似的。設想這樣的標題:在北上深,維持三口之家的中產生活每年要多少錢?有人告訴你要花到30萬;有人告訴你要花到50萬;有人告訴你要花到100萬。因為小孩上學,上各種課外班,請阿姨,養車(還有人會告訴得雇司機),社交、各種生活開支,都要花到這個錢。所有這樣的言論都會在特定的圈層裡得到共鳴,因為從相對的角度來說,它在特定圈層裡是真實的,但在收入水平更低的人群看來,這只是為了維持特定生活做出的一種主動選擇。三個字就是:自找的;兩個字就是:活該。善意表達就是,你得想開點,要有感恩之心。本來無一物,你只是為了自己的選擇而煩惱。更進一步的,這可以被上升到關於“貪嗔痴”的探討,進入心理撫慰產業。作為批駁,經濟學博主(也是Green的朋友)Noah Smith援引數字指出:——大多數美國人有足夠的食物吃(只有大約10%的已婚夫婦家庭報告存在某種程度的糧食不安全);——大多數美國人擁有舒適的居住空間(四口之家的人均居住面積為524平方英呎。注意是人均;只有大約14%的美國兒童生活在“人均房間數超過一人”的家庭中,這些家庭被定義為“過度擁擠”)——大多數美國人有醫療保險(截至2023年,只有5.1%的美國兒童沒有醫療保險)——大多數美國人擁有足夠的交通工具(超過80%的美國四口之家擁有兩輛或更多汽車)。所以,如果要按照字面去理解“貧困”的話,美國就算有精神貧困和心理貧困,但並不存在廣泛的物質貧困問題。而且要看到以上指標遠遠超過大多數大型發達經濟體——美國畢竟已是資本主義的世界之巔,如果不是這樣,它從來也不可能成為(世界唯一)的超級大國。這就是Green這篇文章的問題。它最大的問題是借用“貧困”甚至死亡一詞去描述特定階層的生活壓力。這實際上是對“貧困”這個非常嚴肅的政治與經濟概念的挪用、濫用,只會帶來一個效果,就是淡化對真正貧困群體、邊緣群體處境的關注。我們為什麼要討論Michael Green這篇文章呢?和“斬殺線”有什麼關係?確實沒有任何關係。但是中國在嚴肅討論“斬殺線”這個概念的時候,都會去附會這篇文章,好像說的是同一個問題,因為這是美國最近出現的唯一一個中文網上“斬殺線”有點關聯的概念。但美國輿論上討論的主要是生活壓力和中產階級預期落差的問題,不是什麼社會清理機制的問題。而關於美國流行的“可負擔性”(affordability個問題,需要知道,買不起你認為的必需品就會出現可負擔性問題(30%的家庭認為買不起自己的必需品),但對於每個人和每個家庭來說,何為“必須”是完全主觀。這也是一些美國政客稱“可負擔性”為“偽問題”的原因。小結一下,建議中國關於所謂“斬殺線”的討論不要再援引Michael Green和“14萬美元”的文章。如果你真的有心去調研大城市中產生活,瞭解他們為了維持生活水平所付出的努力、承擔的壓力、以及心理狀況,那是可以的。2.三條線之二:ALICE閾值——貼近“斬殺”的概念第二條線:8萬美元的“ALICE閾值”(Alice Threshold)如果說“斬殺線”討論覆蓋了中產財務脆弱性(缺乏儲蓄、遇到一次意外就會破產)這個主題的話,更貼近的概念,實際上是所謂的“ALICE閾值”。“ALICE閾值”是由美國非營利組織United For ALICE開發的指標,所謂ALICE就是Asset Limited, Income Constrained, Employed的縮寫,指“有工作,但資產有限、收入有限”,難以覆蓋當地基本開銷“的經濟脆弱群體。ALICE閾值是一個具體的“基本生活成本線”,這個數值“不上不下”,比聯邦貧困線(家庭收入3萬美元)要高,但又不足以負擔當地“基本生活成本”。何為基本生活成本呢?ALICE指標的範疇較廣,包括了住房、兒童護理、食物、交通、醫療保健、手機費、稅費,以及10%的雜費和應急資金等所有基本開支。這裡面排除了娛樂費(剛剛Green的14萬美元裡是包括了的)、儲蓄,或所有的非必需消費(例如社交、觀光、兒童培訓班)。那麼ALICE閾值具體是多少呢?美國全國來看,四口之家大概8-10萬美元。那麼美國有多少家庭的年收入落在ALICE閾值以下呢?大概40%。如果剔除貧困線以下的人口(大約10%),則“不上不下”的“純”ALICE家庭大概30%。在有的比較貧困的南部州,ALICE可能超過人口的50%。什麼樣的人群是典型的ALICE呢?基本都是所需工作技能較低的中低層的藍領、白領,譬如零售員、護理員、教師助理、送貨員等。年輕人和老年人比例更高;單親家庭、少數族裔(黑人和西班牙裔)受影響更大。ALICE家庭雖然有工作,但確實生活在所謂的“paycheck to paycheck”狀態。何謂paycheck to paycheck?網上有討論什麼“以貸還貸”的,是不精準的。paycheck to paycheck根本就不是一個新的概念,而是“月光族”,每個月把所有的收入都花掉,沒有任何儲蓄。至於是否通過信用卡來解決,這只是一個金融安排。核心是收入 = 支出,沒有任何的儲蓄。沒有儲蓄的結果是家庭缺乏緩衝能力——許多家庭儲蓄不足以應對400美元的突發支出,如果有一個小的意外,比如失業、得病、車子壞了,或者意外,就可能引發連鎖反應,比如拖欠房租,信用下降,失去住所或工作等等。這些家庭在生活中要經常做艱難選擇,比如要犧牲必需品,要跳過醫療檢查、要吃廉價且不健康的食物、車子壞了沒錢修,讓孩子輟學打工等等。另外,個人生活安排的影響最大,比如毒品、酒精、妊娠等。ALICE都在艱難維持生活,維持健康、教育、住房的穩定。這些人是美國經濟的支柱,但卻最容易受到經濟波動影響。在疫情之後,美國高通膨,房價上漲,使得這些家庭面臨很大的困難,也就是所謂的“one emergency away from poverty”(離貧困只差一個緊急事件)。所以從財務風險角度看,這部分人口確實比較接近“斬殺”的概念——生活有點像走鋼絲,必須在每個環節都要把它經營好。為什麼我們要討論ALICE閾值?因為所有關於“斬殺線”的討論都希望給自己提供一點理論依據和支撐,所以人們發現了ALICE閾值,並對它進行附會,似乎就把討論變成了一個對美國公共政策、社會制度和底層政治經濟制度的討論——這只是為了讓討論看上去更專業,但實際上人們並不真的關心這些美國中產的生活境遇。而ALICE穿透來看並不是什麼新的概念,它只是用財務指標把“工作貧窮”(working poor)給量化了。工作貧窮從來就不是一個新的概念,在所有經濟體都有。舉例,日本很多年前就已經普及“ワーキングプア”這個概念,有大量的著作和紀錄片探討此現象,我在二十年前就看過NHK的紀錄片,記錄工作貧窮的人起早貪黑打幾份工,中午就吃一個很小一碗的泡麵。它不是一個新現象,而是一個普遍存在的老現象。再比如香港,也長期存在一個龐大的“工作貧窮”人群,在高昂物價下艱難維持生活。工作貧窮的最大問題在於相關人群基本都是有工作有收入的,不存在基本都溫飽和庇護問題,因此反而容易被忽略,成為社會保障與福利覆蓋的盲點,對於許多個體而言,遇到重病醫療債務、失業或意外事故,確實可能引發連鎖反應,導致財務破產甚至更嚴重的後果。這也是為了設計ALICE閾值的原因,起到一個警示作用。那現在我們討論一下如何看待這個問題。第一,一部分人群“離貧困只差一個緊急事件”,這個問題是不是在不同社會普遍存在?我們可以具體定義一下,就是在不考慮外部援助的情況下,一個家庭因為一個突發事件(例如大病)就陷入財務困境乃至貧困——毫無疑問,答案是肯定的。每個社會都有類似ALICE的人群。但這個問題實際上是個偽問題,因為除了少數非常富裕的人群外,任何其他家庭都可能面臨這樣的風險,一切只取決於意外的嚴重程度。你的儲蓄可能可以解決涉及1萬元的意外,但不能解決涉及10萬元的意外,或者不能解決涉及100萬元的意外。所謂“一步之遙”只是一個相對概念。因為意外導致陷入貧困實際上既是一個“機率”問題,也是一個財務規劃和管理的問題。實際上,也正是因為有通過財務規劃去防止意外帶來災難性後果的需求,才有了一個金融行業——這個行業叫作保險。所以,探討意外出現的機率是沒有的意義。你沒有必要去假設30%的美國人口(或者其他任何一國的人口)遭遇車禍、大病、天災或者其他意外的機率。一切的核心都在於預防。所以:第二,核心的問題在於如何應對突如其來的緊急事件。意外是機率性問題,是相對問題,永遠有發生的可能性,因此其實是一種結構性問題。對於個人來說,如何應對才是真問題。那麼無非幾種應對方式:1)個人層面的應對。包括理性的財務規劃(例如購買必要的保險),包括量力而為的支出(不要吸毒,不要酗酒,不要衝動消費,不要接待消費,一定要儲蓄)2)家庭/家族層面的應對。一人有難,能不能多方相助。你的家庭、族人、朋友及更廣泛的社群能不能給你提供援手,幫助你渡過難關。3)政府層面的應對:政府能不能提供兜底的社會保障,最低限度,也應當滿足你的溫飽及基本庇護需求,讓你餓不死4)社會層面的應對。包括社區、公益組織、宗教組織,社會捐贈等。一方面,中國對“斬殺線”聚焦個案的,如果“以點帶面”就會出現問題,把個案看成系統,而否定美國社會存在的救助機制(從家庭、社區到政府提供的幫助)。這裡才是真正的問題所在:美國社會和中國社會存在巨大的不同,這個不同還不只是制度的不同,而是族群文化與價值觀的不同。在進一步討論之前,我們先看看第三條“線”——流浪漢線。3.三條線之三:流浪漢線——真正的“斬殺”在此第三條線:幾千到1萬美元——“無家可歸”者。中文的“斬殺線”部分在討論中產階級財務脆弱性,但很大一部分是聚焦在無家可歸者。再強調一下:——部分文章援引的美國近期關於14萬美元收入的可負擔性討論和“斬殺”根本無關;——很多文章援引的美國關於ALICE閾值的討論也屬於附會,只是為了增加專業性。——很多人的興趣點和聚焦實際上是無家可歸者(流浪漢)。資料上看,美國的無家可歸者大概七、八十萬,這部分人群佔美國人口0.2%。對應的,60-70%的人口在14萬美元線以下;40%的人口在ALICE閾值以下;10%的人口在貧困線以下。而無家可歸者占人口的0.2%,所以是最小的一個群體。這部分人群的收入為幾千美元到1萬美元不等。(個人貧困線1.5萬美元;四口之家為3.1萬美元)。沒錯,你一旦流落街頭,可能就只有3-5年的預期壽命了。問題在於,通常而言你不會因為溫飽和庇護而死,而是因為嗑藥而死,包括因為嗑藥引發的問題,包括病重,包括意外,包括暴力犯罪。而嗑藥是你流落街頭的原因之一。它不是結果,而是原因。五、是社會問題,還是個人責任?——以亞裔為例這就到了本文最根本的問題,到底是社會的錯,還是個人的錯?正確的回答是,都有責任。比如說:——因為政府監管缺失,大型藥企無序擴張,並且讓所有醫生大規模推銷止疼藥,使得美國陷入了阿片類藥物危機及芬太尼危機,導致很多人因為吸毒家庭破裂,最終流離失所死在街頭。這是政府的問題。——川普政府第一任貿易代表萊特希澤會告訴你說,這是因為大企業和大資本把產業轉移外包到海外,導致製造業凋零,人們沒有了工作,社區崩壞,陷入抑鬱,結果伴隨而來的是吸毒問題。(順便抨擊一下中國)。還有文化類的責任。個人不能為自己的家庭觀、價值觀負責,因為它生在了這樣的一個組群裡。你生在一個穩定的華裔家庭,和生在一個阿帕拉契亞的白屌絲家庭,發現從小你的母親就帶著你改嫁和遷移,你全家都在吸毒和酗酒(JD·范斯)。這種生活體驗是完全不同的。所以,政府有政府的問題,但是個人層面的因素也是不可忽略的。原來我看過美國一本書,講驗屍官的,對無家可歸者收屍,包括在家裡嗑藥死掉的人。第一件事是先找死者的近親屬,next of kin。你發現一個基本事實是,很多人聯絡不上親屬。他們沒有任何的家人。是真的沒有家人麼?不是。是他們已經和家人不再聯絡。父母不管他們,兄弟姐妹不管他們,子女不管他們。大家族就更沒有聯絡了。他們是社會上孤立、隔絕的人。這個情況在美國可是絕對不罕見。如果你在中國街頭看到一個流浪漢的話,你第一反應可能是,他們的家人去那裡了?怎麼沒人管他?接著我們看看美國的無家可歸者。美國70萬無家可歸者,三分之一黑人,三分之一拉丁裔,三分之一白人,但是基本沒有亞裔。亞裔包括東亞人,也包括南亞人。他們佔美國總人口的6-7%,但無家可歸者非常少,少到統計不上來。東亞人的家庭平均收入超過美國所有族群(平均8萬美元以上)。(美國整體中產階級家庭的收入中位數為79,000美元,而黑人家庭為70,000美元;拉丁裔或西班牙裔家庭為73,000美元;美洲原住民家庭為75,000美元;白人家庭為81,000美元;亞裔美國人家庭為81,200美元。布魯金斯學會文章《中產階級承受力困境席捲美國全境》。https://t.zsxq.com/E3LzO)那麼為什麼亞裔不會變成無家可歸者?很簡單——他們在財務規劃上更加審慎,更加注意儲蓄他們學習更努力,取得學位高於其他族群他們工作更努力,給自己規劃一個更加穩定的工作和職業軌道,失業佔比更低他們更陷入酗酒他們更少陷入毒品問題他們更少從事暴力犯罪他們更少未婚先孕、早孕,讓自己陷入不穩定的多段婚姻他們和父母的關係更加緊密,彼此支援;他們和大家庭、大家族的關係更加緊密,彼此支援他們和社區的關係更加緊密,彼此支援。並且他們可能從屬於某個支援群體或組織這就是問題的根源。這些東西和特定的族群有關。美國本來就是一個個人主義盛行的社會。他們認為,一個人首先要對自己負責。對你的吸毒負責,你對犯罪負責。對你的婚姻失敗負責。這是你的責任,不是社會的責任。而不同族群文化大相逕庭。JD·范斯在《鄉下人的悲歌》裡面寫道,他們是愛爾蘭天主教徒藍領的後代,與一家人從阿帕拉契山脈遷移到俄亥俄州。這裡主要是德國裔、荷蘭裔產業工人,包括少數的WASP(白人盎魯薩克遜新教徒)。俄亥俄州的白人對愛爾蘭的作風、做派和文化感到震驚,認為他們都不能算作白人。沒錯,一百多年前,愛爾蘭人、義大利人都不算白人。這就是族群之間的差異。也由於族群之間存在如此巨大的差異,不同族群的文化和行為完全不同,所以相對於中國,美國人更傾向於把問題歸因到個人,而不是簡單歸因到社會。確實,社會裡存在大量的問題人群,但也有表現很好的人群——比如亞裔。大家應該向亞裔學習呀。六、美國人:不同的物種?那個“美國人”?中國人容易忽略美國的這種文化特殊性。很多東西對我們來說是聞所未聞的。毒品問題。大規模的吸毒、社會化的吸毒。而且是白人中產階級吸毒,即便是社會頂層也很普遍。川普的密友、中東特使、紐約開發商斯蒂夫·威特科夫,大兒子在21歲時吸毒而死;拜登的二兒子,亨特·拜登,常年吸毒。兩周前知名電影製片人和演員Rob Reiner夫婦在自己家中被常年吸毒的兒子用刀刺死。這些在美國都是司空見慣的事情。川普當年來問中國,問我們的情況,“你們沒有毒品問題麼”?在聽說沒有後,他感到非常的震驚。這就是文化衝擊。那我們告訴你,在中文,這些東西都是毒品。在英文,沒有“毒品”的對應概念。只有drug(藥品,和藥店的藥一樣)、substance(物質)、dope(劑量),或者narcotic(精神品)。他們對廣義的“毒品”實際上有一個社會化的接受。這是建立在把各種精神問題都疾病化、用精神藥品應對的基礎上的。而毒品才是導致財務困境、意外死亡、流浪漢死亡的最重要因素“無家可歸”本身。“無家可歸”是美國的一個社會現象,它不僅僅是經濟現象,也不僅僅是社會管理問題,而是社會現象和文化現象,因為這些人被自己的家庭、家族和社區拋棄。少女未婚先孕。很多年前,我在英國地鐵上看免費報紙,就提到現在的青少年未婚先孕的嚴重問題。這就是14-16歲的女性未婚先孕。未婚先孕,且還把孩子生出來,放棄學業,永久影響工作。這是讓你進入貧困的最“安全”辦法。這種情況在英美國家都是社會問題,中國人聞所未聞Runaway kids(離家出走子女)。我們看國外電視和紀錄片,經常會看到一個說法是誰誰誰從家裡。在美國80%離家出走都是白人。亞裔幾乎聞所未聞——這是因為他們從小生活在一個和父母聯絡緊密的家庭文化裡。如果你覺得流浪漢沒有家人照顧很奇怪,那是因為他們父母和子女關係如此。高度發達的機構養老。白人老年人很多獨自居住,或者住在機構化的養老院裡,而不是和子女在一起(例如在同一個社區),子女探訪但不日常照顧,社會把這個看成是正常選擇,而不是“不孝”。中國人則會震驚“怎麼把父母送去養老院”。這其實也是美國白人的文化(實際上我們的近鄰日本也有類似的文化現象),父母和子女關係相對疏遠離婚率非常高。離婚率40-50%,許多人多次結婚,帶孩子重組家庭。對離婚的社會接受度高,不會視為恥辱。但實際上離婚會帶來嚴重的財務問題,因為離婚都需要對資產、財產和現金流進行重新分配,特別涉及在有子女的情況下。日本之前有一個研究就是講老年貧困問題的,中老年離婚是導致貧困的最重要原因性虐待或侵犯。這是美國非常常見的社會問題。主要也是在白人家庭,大多情況也不是親生父母對自己的子女施暴,而是繼父繼母,因為離婚率非常高,家庭經常重組,這種情況就很普遍青少年性早熟和開放。你要設想生活在這樣一個國家裡,沒有任何的網路管制,孩子從小就可以上網看各種東西,包括各種成人內容槍擊,美國憲法保護持槍權,許多家庭都有槍,校園或公共場所不時就有槍擊事件。擁槍者也很容易自殺。死於非命是很“正常”的事情畸形的消費文化。很多美國人不僅是月光族,而且因為對經濟預期悲觀,反而會加速非理性消費,例如既然買房無望,那就把錢都花掉得了;既然收入這麼低,那第一個月領到支票就把錢全花光得了,至少讓自己開心一下。還有就是大量依賴消費金融,即先買再付(BNPL)。大企業和大資本無序擴張,在把美國人變成消費動物上也功不可沒。從這個角度看,美國有40%家庭連應付400美元緊急支出的即時可用應急儲蓄都沒有就很正常了:他們從來不存錢,活在當下。對於這些人來說,就算沒有就業,對前景看空,他們也照樣消費,而且消費得更激進。這些在中國人看來是無法理解的。但你如果拆開看美國不同的族群,就會發現,整個問題在美國的亞裔裡基本不存在,或者說不成為問題。以家庭能不能滿足400美元緊急支出這個問題為例。90%的亞裔家庭可以滿足。有80%的黑人家庭無法滿足,這不是財務問題,而是文化問題人格障礙問題。還有一條,我沒有任何證據,純粹只是表示懷疑。我認為他們的人確實精神障礙比較多。這個不是把精神病、心理病過度疾病化、醫療化的結果。而是在考慮到神經多樣性(neurodiversity),對不同性格人群表示尊重的前提下,我懷疑他們有各種人格問題的人就更多。不僅包括性向,而且包括戀童;包括精神病態(psychopath),包括譜系和ADHD,包括雙向選擇、精神分裂,確實特別多。這些東西大多有遺傳因素。如果他們和精神/人格障礙產業化、疾病化、藥物治療化(背後有醫藥企業資本無序擴張)的話,就會導致整個人口裡相當多比例的人精神出問題。現在為這個趨勢做貢獻的是ADHD。七、一點小結到這裡我們可以做一個小結了。第一,實際問題比你看到的問題要更複雜。不能光看表面,還是要看實質第二,許多問題確實也是過去幾十年出現的,包括美國的去工業化問題、貧富差距問題、毒品問題等,不是老事物,而是新事物。這些因素也催生了川普和全球民粹右翼問題。你縱觀全球發達經濟體,會發現這樣的問題普遍存在第三,美國是一個個人主義導向的社會,傾向於認為個人要對自己負責。所以個別失敗不代表全體失敗。個別失敗甚至不會引發其他人的憐憫第四,美國是一個族群構成極度複雜的社會,可以涵蓋人類社會裡幾乎每個樣本,差異性遠超中國,甚至超出中國人的理解。因此要看到,不同族群之間可以有極大的差異,千萬不能一概而論。即使在美國中國,跨族群之間也會感到文化衝擊:華人家庭可能對白人家庭吸毒感到驚恐;對黑人家庭子女不學習,在街頭混,家裡沒有任何財務規劃也感到驚恐。第五,也是出於這種原因,使得在這個個人主義的、族群差異極大的社會裡推動大規模的社會保障和兜底比較難。設想一下,你是一個在美國兢兢業業的華人家庭,你為什麼要交這麼高的稅去補貼那些你認為游手好閒的黑人。你覺得你們根本不僅不應該屬於一個國家,而且不屬於一個星球。在族群和文化的隔閡下,美國勞動人民永遠無法聯合起來,就是這個道理第六,所以當你在分析個案時,非常容易以偏概全,犯“擴大化”的錯誤。你認為你看到了帶有共性的社會問題,其實看到的是美國社會內部的子群體的問題,而在一個群體裡出現的問題(例如某個南部州白人家庭),未必在另一個群體裡出現(例如某個華裔或印度裔家庭)。結果,你以為你在討論“美國”,其實你是指某個特定的人群。前面講了,如果我們不去做田野研究,不去閱讀大量已經做出來的專業文獻和報導的話,是沒有辦法探討這個話題的。由此更進一步的,我們發現美國社會非常的複雜和異質,使得我們在不考慮族群和文化的基礎上,更加無法探討這個問題。首先要看到我們在認知上的侷限性:知道我們不知道什麼。因此,這個一會兒探討Green的14萬美元線,一會兒附會ALICE閾值,一會兒討論“流浪漢”的所謂“斬殺線”討論,這當然不是一個社會學討論,而只是一種獵奇,一種看熱鬧,因此自然也不需要那麼的嚴肅和嚴謹。如果較真,你就錯了。八、美國“斬殺線”為何在中國成為熱度話題:觸動了那根神經這就到了我們最後一個問題,為什麼“斬殺線”在中國病毒傳播?為什麼大家會突然關心這個問題。它到底觸動了人們的那根神經?其實,無非是以下幾種情緒。“病毒”傳播的基礎:“斬殺線”的說法很形象很生動,頗能抓住人們的想像,形成記憶點。未來,這個遊戲術語可能由此進入公眾話語,往後不僅被用來描述美國,而且會引用到其他領域。例如,職場裡面的“斬殺線”。發自內心的好奇:為什麼美國有這麼大比例的人口可以在這樣的狀態下生活。他們的境遇是什麼樣的,他們面臨什麼樣的選擇。他們的心態是怎麼樣的。為什麼沒有人出來兜底。為什麼不出來反抗。這是一種什麼樣的生存狀態。不少人會認為美國人確實和中國人不一樣。獵奇與“看熱鬧”心態。人們並不真的關心美國的情況,但認為這個題材仍然很有趣,本著看熱鬧的心態進行關注,而且可能還有點幸災樂禍的心態對美國的祛魅。這些年來,伴隨中國的崛起,民眾一直在看到美國的相對衰落,無論是政治、經濟、社會,意識形態還是倫理。“斬殺線”討論只是給這個大趨勢做了一點添磚加瓦。而且對於很多人來說,諷刺在於,美國一直標榜自由和人權,但到最後,三四成的民眾連滿足幾百美元應急之需的存款都沒有,生活處在破產邊緣。這是對美國的一個巨大祛魅。也是對自由派與公知描繪出來的美國的一種幻滅。共鳴部分:中國工薪階層同樣擔心財務脆弱性、財務安全、社會的兜底保障問題,擔心個人和家庭因為突如其來的意外陷入貧困,並因為這些問題感到巨大的生活壓力和焦慮。在這個問題上,人們又是有共鳴,擔心這樣的事情發生在自己身上,也希望這樣的事情不會發生在自己身上批判 + 慶幸。中國人對部分美國人的這種生活狀況表示震驚,對這種社會狀態持批判態度,慶幸自己活在中國,同時希望中國在未來不要伴隨發展出現同樣的問題陰謀論:“斬殺線”的一個要素是認為這是美國對社會底層的淘汰機制、出清機制,把人們長年以來對原教旨的市場主義和資本主義的想像給具象化了。一些人相信並接受這樣的敘事。這就是這套說法在中國得到“病毒性”傳播的原因——一些從來不關注美國的人也覺得這個話題很有趣,因為它可以帶給人們話題、談資、趣味,娛樂價值、情緒價值、制度比較的素材。九、2025年:中國對美國的祛魅之年說到這裡,就不得不強調一下2025年這個時點的重要性了,即,這個事只可能發生在2025年末,不會發生在更早。為什麼?因為2025年是中美兩國力量對比發生變化的轉折性的一年。中國打贏了美國發動的貿易戰,對美國形成了強有力的經濟震懾,並讓世界看到了中國經濟的韌性和實力;美國對中國評估也發生了根本變化,本月初新發佈的川普政府《國家安全戰略》明確承認中國是實力相當的對手,不再追求對中國的意識形態和政治打壓,而是尋求和中國建立經濟互利關係,並務實地回撤到本土搞經濟。回想1979年代末1980年代初中國剛開始搞改革開放時,人們發現,帝國主義似乎空前富庶與繁榮,美國人民並不生活在“水生火熱”之中,而是全方位的遙遙領先。相比之下,中國則遠遠落後。蘇聯解體後,這種想法得到進一步的加強。許多人認為美國在大國競爭中已經取得了歷史性的勝利,並且這種勝利是制度優勢帶來的結果。中國只能奮起直追,迎頭趕上,並虛心向美國學習。在1980年代、1990年代把美國看作人類“燈塔”、“山巔之城”的人們是絕對不敢相信幾十年後美國會蛻變成今天的樣子的。確實,美國大規模地去工業化、離岸化及金融化,就是在1990年代到2000年代初發生的(大概和中國加入世貿同期)。大約在同一時期,美國開始爆發止疼片即阿片類藥物危機。中間經歷了一次恐怖襲擊,兩次戰爭(阿富汗與伊拉克戰爭),一次重大金融危機,經過二十年時間,經濟脫實向虛,貧富差距不斷加劇。經濟基礎和社會機理遭到破壞。這才有了民粹運動,才有了川普現象。但就在這些研究美國經濟社會問題的書籍(例如《鄉下人的哀歌》、《掃地出門》)在2017、2018年陸續引入中國的時候,也還很難引起國人的關注,因為2018年是美國川普政府對中國發動第一次貿易戰的時候。中國人感受到了被美國“卡脖子”和經濟、科技、金融打壓遏制帶來的巨大的壓力。因此,2018年的國人絕對沒有“心情”關注美國的“斬殺”,也不會輕易相信這樣的說法。2020年的新冠疫情對國人對美國的一個極大祛魅。人們看到美國防疫全面拉胯,人們自私與反智,將弱勢群體和老人置於不顧,導致上百萬人在短時間內死亡。美國不去正面防疫,而是依靠激進的貨幣政策和財政政策刺激經濟,當年被“美吹”(包括專家、財經人士、經濟學家、公知等)奉為圭臬,結果導致極其嚴重的通貨膨脹及物價問題,進一步加劇了美國本已十分嚴重的民生問題,直接把拜登和哈里斯送出了白宮,讓川普和MAGA高調歸來,並拿到了全面改造美國的政治授權。然後就到了2025年的貿易戰。如果說蘇聯解體是二戰以來最大的國際地緣政治事件,那麼中國在貿易戰上成功反制美國可以說是二戰以來最大的國際地緣經濟事件——它不僅倒逼川普政府重設對華戰略,而且加速了美國由單極霸主退位,加速讓世界進入多極秩序。這個歷史意義如果在今天還看不清楚,則在往後幾年可以看得更清楚。人們終將認識到,2025年是改寫國際秩序、歷史分水嶺的一年。1980-1990年代的中國輿論,可以說是對美國的崇拜。2016-2018年,川普上台以及中美首輪貿易戰開打之時,美國已然衰敗,但中國還在應對貿易戰,妄自菲薄的人不在少數;民眾沒有準備好“接受”美國的衰落,也“胃口”消受美國的衰落。但到了2025年末,時代背景已經完全不同。中國民眾相信美國的衰落,認定美國的衰落,也看到了美國的衰落,對美國的“祛魅”及批判性審視已經成為更加主流的敘事,並獲得了越來越廣泛人群的接受。當美國在《國家安全戰略》中重設對中國的關係時,中國民眾也在重設對美國的認知。因此,當“斬殺線”這樣的說法出現時,人們最初會有些吃驚,但可能很快就認為這並不奇怪,甚至有些“理所當然”——這就是美國,美國就是這樣。在今天的中國,人們仍然會對美國的科技領先、金融領先以及馬斯克這樣技術與創業奇才的情懷所吸引,是為中國競爭與追趕的動力,但美國的政治與經濟制度作為一個整體,在國人心中不說完全幻滅,也是完全祛魅。中國能夠越來越能夠客觀地看待美國:取其精華,去其糟粕,學習美國的成功經驗,避免美國的錯誤經驗,走一條適合中國自己的道路,並最終超越美國。 (tuzhuxi)
英國《金融時報》丨歐洲的二等公民
Europe’s second-class citizens那些曾鄙視海灣國家“卡法拉”(kafala)制度的國家,正悄然走向建立自己的版本。本周恰逢我離開卡達三周年。當時我剛報導完世界盃足球賽。黎明時分,我和一位同事搭優步前往機場。我們的巴基斯坦司機剛結束16小時的輪班,盼著能睡個好覺。他解釋說,在多哈開車壓力很大,因為當地“公民”——即卡達人,通常開著四驅越野車,認為自己有權隨意插隊到非公民前面。如果優步司機不順從,他們會大發雷霆。而這位巴基斯坦司機卻毫無申訴管道。在卡達,移民被當作權利極少的二等人對待。那時,許多歐洲人對卡達對待移民的方式感到憤怒。海灣地區普遍實行的“卡法拉”制度——賦予僱主對移民工人極大控制權——被視為毫無人道。然而如今,我們正目睹一種新的歐洲體系初現端倪,其面貌驚人地類似卡達模式:不斷引進更多移民勞工,卻將他們永久視為二等階層。不妨稱之為“歐版卡法拉”(Eurokafala)。背景是老齡化嚴重的歐洲:從清潔到照護等行業都急需移民勞動力,但社會又並不真正歡迎他們。隨著移民來源從以白人歐洲人為主,轉變為以非白人、非歐洲人為主(英國主要是亞洲人,法國主要是非洲人),移民問題變得更具爭議性。這一趨勢還將持續:非洲人口預計將從目前的15億增至2050年的25億,而歐洲勞動年齡人口則急劇萎縮。維也納經濟與商業大學的研究顯示,即便是受過高等教育的歐洲人,對移民的支援度也在下降。我們的社會已是多元文化,卻幾乎沒有政黨願意承認這一現實。歐洲極右翼政黨在經濟或性別議題上的立場各異,但在反移民上卻高度一致。這使得移民議題的公共討論幾乎完全圍繞身份認同與犯罪展開,而非人口結構或經濟需求。政客們如何調和“需要移民”卻又“不願接納”的矛盾?辦法是:高調反對最顯眼的移民形式(如穿越英吉利海峽或地中海的小船偷渡者、尋求庇護者),同時悄悄引入更多勞工。英國脫歐公投很大程度上由反移民情緒驅動,但此後英國移民人數卻大幅飆升。義大利右翼領導人喬治亞·梅洛尼一方面高調推動在阿爾巴尼亞處理庇護申請——反映出歐洲普遍希望將庇護程序“外包”;另一方面卻發放了近百萬份非歐盟工作簽證。法國議會在2023年通過了嚴格的移民法,但2024年移民人數反而激增。過去,歐洲政客常高談“融合”——要求移民接受我們所謂的價值觀。如今這類話語正在消失。新趨勢(以英國為例)是:向特定行業發放有時限的工作簽證,限制移民攜帶家屬的權利,並讓他們等待更長時間——某些情況下長達數十年——才能獲得永久居留權。在法國,極有可能成為下一屆執政黨的極右翼政黨“國民聯盟”甚至主張廢除出生地公民權,這意味著一些人即便一生都在法國生活,也永遠只是二等外人。這讓我想起在阿布扎比遇到的一位巴勒斯坦人:他出生在當地,卻要承擔公司幾乎所有工作,而他的本地同事則悠然自得。一個由單身、權利受限、基本游離於社會之外的人組成的次等階層,必然遭受各種侵害。他們難以就虐待行為提出申訴。於是,我們將看到歐洲版的、曾被我們猛烈抨擊的卡達現象:移民多年無休地工作;建築工人在不安全條件下喪生。更嚴厲的歐洲法規無法終結非法移民。人們會逾期滯留。歐洲各國政府可採取的一種應對方式,是效仿美國的移民與海關執法局(ICE)——組建一支准軍事力量,大張旗鼓地搜捕任何看起來像“典型非法移民”的人,即非白人且貧困者。這些搜捕行動同時也成為政府展示“陽剛威權”的宣傳視訊,使所有非白人——那怕家族幾代都是公民——始終處於“非法”的懷疑之下。“歐版卡法拉”很可能贏得選民支援。許多本土居民認為,“英國人”“法國人”“德國人”等身份是某種“高端國籍”。建立一個永久性的移民服務階層,正是對這種優越感的制度性認可。 (邸報)
《衛福部成立兒少及家庭支持署 呂建德:力爭2026年正式掛牌運作》衛生福利部今日宣布重大組織改革進展,將成立「兒少及家庭支持署(兒家署)」,進一步強化兒童照護與福利措施。衛福部次長呂建德表示,相關組織法修法草案已送行政院審議,預計明年送立法院審查,力爭2026年正式掛牌運作。呂建德出席立法院衛環委員會時指出,賴清德總統、行政院長卓榮泰等領導高層均高度關注兒家署設置進度。衛福部已將「衛福部組織法」修法草案送入行政院,目標在明年將草案提送立法院,並讓兒家署在2026年正式掛牌運作,以回應社會各界對兒少專責機構的期待。呂建德強調,本次兒福部第二次組織改造不僅增設兒家署,也將整合現有司署進行組織改造,提升行政效能並符合社會需要。衛福部長石崇良日前表示,將整合長照與社家署業務,由新任社家署署長周道君善用其醫政及法制經驗,在此次組改中擔任關鍵樞紐角色。兒家署成立後,將與相關單位共同處置青少年網路成癮等問題。呂建德指出,網路成癮與過度暴露是全球兒少族群面臨的重要問題,可能衍生精神健康相關議題。他舉例澳洲已明定16歲以下禁止使用社群網路,衛福部也將基於兒少最佳利益原則,進行最妥適的處置。待兒家署成立,將與國家通訊傳播委員會(NCC)等相關組織共同討論,研議最佳因應作為。與此同時,衛福部也推進長照政策升級。明年元旦「長照3.0」即將上路,將全年齡失智者納入給付範圍。呂建德表示,新版長照政策將推出「失智症防治照護政策綱領3.0」專章,重點涵蓋失智照護資源布建、因應不同失智程度的適切照護、年輕型失智症的多元照護方案,以及失智專業人才培訓等。長照3.0將依病程分級提供服務。極輕度與輕度且具行動能力者,可至失智據點;如有BPSD(行為心理症狀)者,可至權責型失智據點;符合長照需要等級者,可使用居家或社區式照顧服務;需24小時密集照顧者,可至失智團屋或住宿式機構失智專區。呂建德特別強調,對青年失智者而言,保護其就業權至關重要。衛福部將與勞動部密切合作,在患者確診後進行職務再調整與再設計,提供個案協助。國健署也將持續提高年輕人對失智症的自我認識與警覺。
MIT研究預測:AI對勞動力市場的潛在替代高達1.2兆美元薪酬規模
寫在前面在當前全球經濟格局中,人工智慧對勞動力市場的重塑已成為不可逆轉的趨勢。然而,政策制定者和市場觀察者長期以來普遍面臨一個核心矛盾:我們所能觀測到的失業和顛覆,僅是這場結構性變革的冰山一角麻省理工學院(MIT)近期發佈的《冰山指數》研究,正是旨在解決這一認知偏差的戰略工具。該研究將AI視為一種可被精確測繪的經濟地理風險,將決策視角從"事後危機管理"提升到"事前數位化模擬"。一、核心事件:建構數字孿生勞動力大軍MIT研究人員的激進行動是為1.51億美國勞工建構軟體對等物,相當於為美國勞動力建立了一個"數字孿生"。這一舉措將AI顛覆風險的評估從基於傳聞,轉變為基於大規模模擬和微觀技能對應的科學模型。重要發現:目前在科技中心可見的工資中斷僅佔總風險的2%,而隱藏的風險層比可見風險大5倍。二、戰略動機:政策工具的"先發制人"政策制定者(包括田納西州、猶他州和北卡羅來納州等報告的共同作者)使用《冰山指數》進行前瞻性規劃:1. 風險前瞻與預算最佳化該指數是一個"早期預警地圖",使政策制定者能夠在衝擊發生之前,轉移資金和調整培訓。避免盲目投入數十億美元的再培訓投資。2. 精準干預與地域定製化傳統模型往往關注沿海城市,但《冰山指數》提供了細化到郵政編碼的深度地圖,使政策干預措施可以精準匹配當地職業風險。3. 政策沙盒與立法測試該指數提供一個互動式模擬環境,允許州政府對各種政策槓桿進行實驗,探索技術採用的變化如何影響噹地就業和GDP。三、從海岸到腹地的風險遷移在《冰山指數》出現之前,關於AI對就業影響的敘事主要集中在科技行業。此前MIT另一項研究指出,95%的企業AI採用並未成功,這可能助長了對AI變革速度的低估。舊範式:可見風險• 集中於科技中心/沿海城市• 僅關注可見的工資中斷(2%)• 聚焦高科技/軟體開發行業• 如何應對即時裁員衝擊新範式:《冰山指數》揭示的隱藏風險• 覆蓋3,000個縣,包括非沿海地區• 揭示五倍於可見風險的隱藏層• 廣泛涉及醫療保健、金融和專業服務• 如何提前部署大規模技能重塑四、現實挑戰:不確定的"倒計時""研究人員強調,這不是裁員的倒計時時鐘。它更像是一個早期預警地圖,以便政策制定者能夠在衝擊來臨之前,圍繞資金和培訓進行轉移。"風險是潛伏的(隱藏層是可見層的五倍),但其轉化為實際裁員的速度和時間表是不確定的。這導致兩個主要挑戰:政策惰性風險由於沒有立即爆發的大規模失業,立法機構可能缺乏動力去迅速撥付數十億美元的再培訓資金。資料與現實的校準模型依賴於將32,000種技能對應到923種職業。如果實際AI採用速度與預測有偏差,可能導致資源被錯誤分配。五、深層護城河:互動式生態系統《冰山指數》真正的壁壘並非僅僅是一份報告,而是其提供的互動式模擬環境。田納西州案例•已成為這一處理程序中的先行者•參與了報告的共同撰寫•根據《冰山指數》建構了自己的AI與工作儀表板•跟蹤該州範圍內的職業風險暴露和工資影響•正在指導該州的政策和支出決策這種地方政府對AI模型的內化和應用,形成了難以被傳統方法取代的軟實力壁壘。六、未來推演:勞動力市場的地域分化未來3-5年,美國勞動力市場的格局將根據州政府對《冰山指數》等前瞻性工具的採納程度而產生顯著分化。先行者(如田納西州)通過AI儀表板和"技能優先"招聘規則,能夠提前避險AI對醫療、金融和專業服務等行業的衝擊,保持勞動力市場的穩定性和競爭力。滯後者缺乏精確的風險地圖,繼續依賴舊有的低效培訓投資,導致政策滯後於實際的失業衝擊,加劇地域經濟不平等。核心受影響職業醫療保健(行政和診斷支援)金融(後台操作)專業服務(基礎法律文書、諮詢資料整理)七、三大核心結論結論一資訊不對稱是最大的政策成本AI變革時代最大的壁壘不是技術的缺乏,而是風險的錯誤量化和地理資訊的不對稱。結論二再培訓投入的數位化勢在必行面對1.2兆美元工資的潛在風險,對政策有效性進行事先模擬和驗證的趨勢不可逆轉。結論三政策執行力的AI化AI對勞動力市場的最終影響,將體現在政府治理和政策執行效率的提升上。"這種方法就像一個預警系統,不是告訴你災難何時發生,而是告訴你那裡需要提前修建堤壩,並允許你在模擬環境中測試堤壩的高度和材料。"風險提示1.政治與財政惰性風險:立法者可能因缺乏即時政治壓力而延遲再培訓資金。2.模型精準性與校準風險:AI技術實際應用速度可能與模型預測出現偏差。3.技術突變與加速風險:AI技術進步速度可能超過指數更新速度。4.資料隱私與跨州協調風險:聯邦層面協調使用資料可能面臨挑戰。 (FinHub)
MIT最新研究: AI有能力替代美國 11.7%的勞動力,波及全美!1.5 億員工被智能體建模
越來越多的人說,AI 可能會取代一些工作,但它到底會影響那些崗位?影響有多大?最近,一項來自 MIT 的新研究給出了一個驚人的答案:一組隱藏資料表明,AI 當前已經有能力替代 11.7% 的美國勞動力,對應工資價值約1.2兆美元。如果只看目前 AI 的實際應用,主要集中在科技和計算崗位,那麼AI的影響僅佔約2.2%的勞動力,對應工資價值約 2,110 億美元。但當研究者把行政、金融和專業服務等崗位納入考慮後,AI 潛在影響範圍飆升至 11.7% 的勞動力,約 1.2 兆美元工資。這份研究成果來自一個名為 Iceberg Index(冰山指數) 的項目,由 MIT 聯合 橡樹嶺國家實驗室(ORNL) 開發。研究團隊把 AI 與人類勞動力的關係做了一個大膽模擬:他們將美國 1.51 億名員工都“數位化”,讓每個人按照技能、任務、職業和地理位置分類,然後觀察 AI 工具可以覆蓋那些工作任務,甚至能精確到郵政編碼區域。ORNL 負責人 Prasanna Balaprakash 將這個模型形象地比喻為“美國勞動力市場的數字孿生”。通過這個工具,研究者不僅可以看到 AI 已經進入那些崗位,還能預測潛在的技術曝光區域。01. 將1.51億職工建模為智能體論文中,Iceberg Index 的建構過程分為三步:1、人類勞動力對應模型覆蓋 1.51 億員工、923 個職業、3,000 多個縣,總共包含 32,000+ 技能。每個職工被建模為一個“智能體”,擁有技能、任務、地理位置等屬性。模型可以分析技能遷移潛力和職業相似度,為未來崗位轉型提供規劃路徑。2、AI 勞動力對應研究團隊收集了 13,000+ AI 工具,包括程式碼生成、流程自動化和認知輔助工具。使用與人類相同的技能分類體系,直接對比 AI 與人類能力。評估 AI 在增強人類工作(如醫院文書自動化)和完全轉變任務(如程式碼自動生成)的潛力。3、人類–AI 聯合模擬使用 MIT 的 Large Population Models (LPMs) 模擬數十億次互動。模擬考慮技術成熟度、採納行為和區域差異,輸出職業技能變化、地理分佈以及跨行業的連鎖影響。政策制定者可用模擬結果測試培訓方案、資源分配和激勵策略。整個模擬在橡樹嶺 Frontier 超級電腦 上運行,保證了大規模、高精度的預測能力。在這一基礎上,研究團隊建構了冰山指數(Iceberg Index)。這是一項以技能為中心的衡量指標,用於評估勞動力在 AI 經濟中的暴露度。它量化了 AI 系統在技術上可以執行的職業任務的“工資價值”,從而揭示人類勞動與 AI 能力重疊的部分。該指數從三個維度評估每一個職業:該職業需要的技能;這些技能的可自動化程度;工作本身的價值(工資與就業規模)。這些因素結合後,為每個職業給出一個一致的“技術暴露度”:它指的是 AI 能力與人類技能的重疊,而不是預測崗位是否會消失。例如,金融分析師不會消失,但 AI 可能能夠處理大量文件處理與常規分析工作。這會改變角色結構與技能需求,而不一定減少崗位數量。02. AI 有能力替代11.7%的勞動力研究團隊首先對當前 AI 最集中採用的職業內的技術暴露度進行了量化,並給出了一組資料:截至 2025 年,超過 10 萬 工作崗位的裁撤與 AI 重組直接相關;AI 系統每天生成超過 10 億行程式碼,已超過人類開發者的產出。因此,他們測量了電腦與技術類職業中的技能重疊度——表層指數(Surface Index)。結果發現,全國範圍內的表層指數為 2.2%,對應約 2110 億美元的工資價值、約 190 萬名技術職業從業者。包括軟體工程師、資料科學家、資料分析師、項目經理以及其他技術密集型崗位,這些都是目前 AI 採用最集中的職業群體。但這還僅僅只是冰山一角!除了科技類職業,AI 的能力還擴展到認知性和行政工作。原本為程式設計開發的工具,已經展現出在文件處理、財務分析、日常行政任務 等方面的技術能力,說明技術能力可以從科技領域遷移到其他行業。部分公司已經開始削減非技術性崗位:IBM 通過 AI 自動化減少了人力資源崗位Salesforce 暫停了非技術崗位招聘McKinsey 預測到 2030 年,約 30% 的財務任務可實現自動化研究團隊發現,當考慮 AI 在行政、金融和專業服務等崗位的潛在自動化能力時,這一數字上升至 11.7% 的勞動力,是表層指數的5倍,約 1.2 兆美元工資(稱為 Iceberg Index 冰山指數)。此外,研究作者也強調,這些結果僅代表 AI 能力與人類技能的重疊,並非實際的未來崗位消失情況,真正影響取決於企業、工人和地方政府的應對策略。03. 影響不限於沿海科技中心人們常以為 AI 取代最多的崗位會集中在沿海科技公司聚集的地區,但冰山指數顯示,AI 接管工作任務的能力 在全美範圍內更廣泛分佈。研究表明,許多州如果僅看當前計算和技術崗位的 AI 採納,影響不大;但當加入其他變數後,潛在影響大幅上升。例如,鐵鏽地帶的俄亥俄州、密歇根州和田納西州,表面指數不高,但冰山指數顯示認知工作(金融分析、行政協調、支援製造業的專業服務)有 十倍於表面指數的潛在技術曝光。例如這幅圖,左邊的冰山指數圖顯示,AI 的認知自動化能力已經擴展到沿海科技中心之外。一些意想不到的州,比如 特拉華州 和 南達科他州,因為行政和財務崗位集中,其指數甚至高於加州。右邊的自動化差距圖則揭示了各州當前實際 AI 採用情況與未來潛在變革之間的差距。像 俄亥俄州 和 密歇根州 這樣的製造業州,在物理自動化尚未大規模普及之前,就已經有大量隱藏的白領崗位可能被 AI 替代。這意味著這些州需要提前為行政、協調等崗位的變化做好準備。研究團隊表示:就算是密西西比、懷俄明這類“低科技州”,在行政、財務、專業服務 等崗位上的技術暴露度仍然很高。換句話說:它們看似與科技無關,但AI 的能力結構與其勞動力技能高度重疊,未來衝擊將遠比表層指數顯示的更大這表明:僅以當前可見的AI 採用情況來判斷風險,會嚴重低估真實暴露度。此外,MIT 和 ORNL也表明,他們建立冰山指數的目的是希望地方政府能夠提前應對 AI 可能帶來的衝擊。可以通過數字孿生模型,分析每個城市街區、每個崗位技能的自動化風險。模擬政策干預(培訓、資金投入、激勵機制)對就業和 GDP 的影響。提前規劃技能培訓、基礎設施和人才投資,實現 “先準備、後應對”。據CNBC報導,田納西州已在官方 AI 勞動力行動計畫 中引用冰山指數,北卡羅來納和猶他州也正在使用該工具制定政策方案。04. 網友熱議:事情沒那麼簡單這項研究在Reddit上也掀起了軒然大波,許多網友紛紛在評論區提出不同看法。一位網友調侃道:“研究由山姆·奧特曼資助。”有網友認為,說 AI 會替代多少工作,其實是反映了“無意義工作”的現狀,而不完全說明 AI 的能力或實用性。還有網友指出,如果用AI替代人類的工作,公司會面臨責任歸屬不清的問題,不如一紙合同來得可靠。當然,也有不少網友依然不信任AI投入實際生產的能力,認為“炒作遠遠超出了實際應用”。(51CTO技術堆疊)
重磅!Ilya現身,最新2萬字採訪來了:藏了一手,但其他全部都分享出來了「超級 AI 將吞噬文明級能源」
Ilya 大神現身最新採訪,整個採訪持續1個半小時,全文2萬字原汁原味呈現,這是最好的傳達大神思想的方式,不用任何總結,強烈建議收藏逐字反覆閱讀當然為了最快感受大神的思想,我隨便挑了一些重點:Ilya認為當前的方法會“走一段路,然後就走下坡路”,它們會不斷改進,但無法實現通用人工智慧那種行之有效的系統是“我們目前還不知道如何建構的”預計未來幾年將對勞動力市場產生重大影響主要瓶頸:泛化能力。模型在這方面遠遜於人類你可以訓練模型解決所有競技程式設計問題,但模型仍然無法培養出真正的“品味”,而一個青少年大約 10 個小時就能學會開車評估分數看起來很棒,但實際性能卻很差,因為強化學習訓練最終會針對評估本身進行最佳化真正的獎勵駭客是那些設計這些基準和訓練循環的研究人員他說他知道還缺少什麼,但不會公開分享他預測,這種擁有“大陸級算力”的超級智能將在 5 到 20 年內誕生“你知道最瘋狂的是什麼嗎?這一切都是真的,我們生活在科幻中”這句話讓我感同身受在這1個半小時中Ilya 和主持人討論了 SSI(Ilya的超級智能公司) 的戰略、預訓練存在的問題、如何提高 AI 模型的泛化能力,以及如何確保AGI的順利發展正文Ilya Sutskever你知道最瘋狂的是什麼嗎?這這一切都是真實的。Dwarkesh Patel是指什麼?Ilya Sutskever你不覺得嗎?所有這些關於 AI 的事情,整個灣區的現狀……它正在發生。這難道不像是科幻小說裡的情節嗎?Dwarkesh Patel另一件瘋狂的事是,“慢速起飛”(slow takeoff)的感覺是如此平常。以前覺得如果我們把 GDP 的 1% 投入到 AI 中,那感覺會是一件驚天動地的大事,但現在感覺就像是……Ilya Sutskever事實證明,我們適應得很快。而且這也有點抽象。這到底意味著什麼?意味著你在新聞裡看到某某公司宣佈了某某金額的投資。你只能看到這些。到目前為止,還沒有在其他方面真正感受到它。Dwarkesh Patel我們要從這裡開始聊嗎?我覺得這是個有趣的討論。Ilya Sutskever當然。Dwarkesh Patel我認為你的觀點——即從普通人的角度來看,沒什麼太大的不同——甚至在奇點到來時也會繼續成立。Ilya Sutskever不,我不這麼認為。Dwarkesh Patel好吧,這很有趣。Ilya Sutskever我剛才指的“感覺沒什麼不同”,是因為比如某家公司宣佈了一個難以理解的巨額投資數字。我覺得沒人知道這意味這什麼。但我認為 AI 的影響將會被切實感受到。AI 將滲透到整個經濟中。會有非常強大的經濟力量推動這一點,我認為這種影響會被非常強烈地感受到。Dwarkesh Patel你預計這種影響什麼時候會出現?我覺得現在的模型看起來比它們實際產生的經濟影響要聰明得多。Ilya Sutskever是的。這是目前關於模型最令人困惑的事情之一。如何調和“它們在評估測試(evals)中表現如此出色”這一事實?你看那些測試,你會想,“這些題目挺難的。”它們做得很好。但經濟影響似乎大大滯後。很難理解,為什麼模型一方面能做這些驚人的事情,另一方面卻會在某些情況下重複犯錯?舉個例子,假設你用“感覺程式設計”(vibe coding)做點什麼。你做到某一步,然後遇到了一個 bug。你告訴模型:“能不能幫我修一下這個 bug?”模型說:“天那,你太對了。確實有個 bug。讓我來修好它。”然後它引入了第二個 bug。你告訴它:“你有這個新的第二個 bug,”它又告訴你:“天那,我怎麼會這樣?你又說對了,”然後它又把第一個 bug 帶回來了,你就在這兩個 bug 之間來回折騰。這怎麼可能?我不確定,但這確實表明有一些奇怪的事情正在發生。我有兩個可能的解釋。比較異想天開的解釋是,也許強化學習(RL)訓練讓模型變得有點過於一根筋和狹隘,有點過於缺乏意識,即使它在其他方面讓它們變得更有意識。正因為如此,它們無法完成一些基本的事情。但還有另一種解釋。以前人們做預訓練(pre-training)時,“用什麼資料訓練”這個問題是有答案的,因為答案是“所有資料”。當你做預訓練時,你需要所有的資料。所以你不用糾結是用這個資料還是那個資料。但是當人們做 RL 訓練時,他們確實需要思考。他們會說,“好吧,我們要為這個東西做這種 RL 訓練,為那個東西做那種 RL 訓練。”據我所知,所有公司都有團隊專門製作新的 RL 環境,並將其加入到訓練組合中。問題是,那些環境是什麼?自由度太高了。你可以製作的 RL 環境種類繁多。有一件事是可以做的,而且我認為這是無意中發生的,就是人們從評估測試中汲取靈感。你會說,“嘿,我希望我們的模型在發佈時表現得非常好。我想讓評估分數看起來很棒。什麼樣的 RL 訓練能在這個任務上有所幫助?”我認為這種事情確實發生了,這可以解釋很多正在發生的事情。如果你把這一點與“模型的泛化能力實際上並不夠好”結合起來,這就有可能解釋我們看到的許多現象,即評估表現與實際現實世界表現之間的脫節,這是我們今天甚至還沒完全理解其含義的事情。Dwarkesh Patel我喜歡這個觀點,真正的“獎勵駭客”(reward hacking)其實是那些過於關注評估分數的人類研究員。我認為有兩種方式來理解,或者試圖思考你剛才指出的問題。一種是,如果僅僅通過在程式設計競賽中變得超人般強大,模型並不會自動變得更有品味、在改進程式碼庫時表現出更好的判斷力,那麼你就應該擴展環境套件,這樣你就不只是測試它在程式設計競賽中的表現。它還應該能夠為 X、Y 或 Z 製作最好的應用程式。另一種,也許這正是你暗示的,就是問:“為什麼在程式設計競賽中變得超人般強大,卻不能讓你在更廣泛的意義上成為一個更有品味的程式設計師?”也許我們要做的不應該是不斷堆疊環境的數量和多樣性,而是要找到一種方法,讓你能從一個環境中學習,並在其他事情上提高表現。Ilya Sutskever我有一個人類的類比可能會有幫助。讓我們以程式設計競賽為例,既然你提到了。假設有兩個學生。其中一個決定要成為最好的競賽程式設計師,所以他們會在這個領域練習 10,000 小時。他們會解決所有問題,記住所有證明技巧,並且非常熟練地快速正確實現所有演算法。通過這樣做,他們成為了最好的之一。第二個學生想,“哦,程式設計競賽很酷。”也許他們練習了 100 小時,少得多,但他們也做得很好。你認為那一個在以後的職業生涯中會做得更好?Dwarkesh Patel第二個。Ilya Sutskever對。我認為這就是正在發生的事情。現在的模型更像第一個學生,甚至程度更甚。因為我們會說,模型應該擅長程式設計競賽,所以讓我們把有史以來的每一個程式設計競賽問題都拿來。然後我們做一些資料增強,這樣我們就有了更多的程式設計競賽問題,然後我們在這些資料上訓練。現在你得到了這個偉大的競賽程式設計師。用這個類比,我覺得更直觀。是的,好吧,如果它訓練得這麼好,所有不同的演算法和證明技巧都觸手可及。但直覺告訴我們,這種程度的準備並不一定能泛化到其他事情上。Dwarkesh Patel但是,第二個學生在進行那 100 小時的微調之前,他在做什麼?這裡的類比是什麼?Ilya Sutskever我覺得他們有“它”。那種“天賦”因素。我在讀本科的時候,記得有個同學就是這樣,所以我知道這種人是存在的。Dwarkesh Patel我覺得把這種“天賦”與預訓練的作用區分開來很有趣。理解你剛才說的“不需要在預訓練中選擇資料”的一種方式是,這實際上與那 10,000 小時的練習並無二致。只是你免費得到了那 10,000 小時的練習,因為它已經在預訓練分佈中的某個地方了。但也許你是在暗示,實際上預訓練並沒有帶來那麼多的泛化。預訓練中只有海量的資料,但它不一定比 RL 泛化得更好。Ilya Sutskever預訓練的主要優勢在於:A,資料量巨大;B,你不需要費盡心思去想把什麼資料放入預訓練中。它是非常自然的資料,確實包含了很多人們做的事情:人們的思想和很多特徵。它就像是整個世界被人們投射到了文字上,而預訓練試圖利用海量資料來捕捉這一點。預訓練很難推理,因為很難理解模型依賴預訓練資料的方式。每當模型犯錯時,是不是因為某些東西碰巧沒有得到預訓練資料的充分支援?“預訓練支援”也許是個寬泛的術語。我不知道我還能不能補充更多有用的東西。我不認為預訓練有人類層面的類比。Dwarkesh Patel有些人提出過預訓練的人類類比。我很想聽聽你認為它們為什麼可能是錯的。一種是把這看作人生的前 18 年、15 年或 13 年,那時他們不一定有經濟產出,但他們在做一些讓他們更好地理解世界的事情。另一種是把進化看作是進行了 30 億年的搜尋,然後產生了一個人類生命實例。我很好奇你是否認為這些可以類比預訓練。如果不是預訓練,你會如何看待人類的終身學習?Ilya Sutskever我認為這兩者與預訓練之間都有一些相似之處,預訓練試圖扮演這兩者的角色。但我認為也有一些巨大的差異。預訓練的資料量非常非常驚人。Dwarkesh Patel是的。Ilya Sutskever不知何故,一個人即使過了 15 年,接觸到的資料只是預訓練資料的一小部分,他們知道的東西少得多。但無論他們知道什麼,不知何故他們理解得更深。在這個年紀,你就不會犯我們 AI 犯的那種錯誤了。還有一件事。你會說,這可能是像進化一樣的東西嗎?答案是也許。但在這種情況下,我認為進化實際上可能更有優勢。我記得讀過這個案例。神經科學家瞭解大腦的一種方式是研究大腦不同部位受損的人。有些人的症狀奇怪到你無法想像。這真的非常有趣。我想到了一個相關的案例。我讀到過一個人,他的大腦受到某種損傷,中風或事故,導致他的情感處理能力喪失。所以他不再感覺到任何情緒。他仍然非常善於表達,能解決小謎題,在測試中看起來一切正常。但他感覺不到情緒。他不感到悲傷,不感到憤怒,也不感到興奮。不知何故,他變得極不擅長做任何決定。決定穿那雙襪子都要花好幾個小時。他會做出非常糟糕的財務決定。這說明了我們內建的情緒在使我們成為一個可行的智能體方面扮演了什麼角色?聯絡到你關於預訓練的問題,也許如果你足夠擅長從預訓練中獲取一切,你也能得到那個。但這似乎是那種……嗯,從預訓練中獲得那個東西可能是可能的,也可能不可能。Dwarkesh Patel“那個”是什麼?顯然不僅僅是直接的情緒。它看起來像是某種類似價值函數(value function)的東西,它告訴你任何決定的最終回報應該是什麼。你認為這不會從預訓練中隱式地產生嗎?Ilya Sutskever我認為它是可以的。我只是說這不是 100% 顯而易見的。Dwarkesh Patel但這到底是什麼?你怎麼看待情緒?情緒在機器學習(ML)中的類比是什麼?Ilya Sutskever它應該是某種價值函數的東西。但我不認為有一個很好的 ML 類比,因為目前,價值函數在人們做的事情中並沒有發揮非常突出的作用。Dwarkesh Patel如果方便的話,也許值得為觀眾定義一下什麼是價值函數。Ilya Sutskever當然,我很樂意。當人們做強化學習(RL)時,目前的做法是如何訓練這些智能體的?你有一個神經網路,給它一個問題,然後告訴模型,“去解決它。”模型會採取數千甚至數十萬個動作或思考步驟,然後產生一個解決方案。這個解決方案會被打分。然後,這個分數被用來為你軌跡中的每一個動作提供訓練訊號。這意味著,如果你在做一件持續時間很長的事情——如果你在訓練一個需要很長時間才能解決的任務——在你想出提議的解決方案之前,它完全不會進行任何學習。這就是目前天真的 RL 做法。這就是 o1、R1 表面上的做法。價值函數的意思是,“也許有時(不總是)我可以告訴你,你做得是好是壞。”價值函數的概念在某些領域比其他領域更有用。例如,當你下國際象棋丟了一個棋子,我搞砸了。你不需要下完整局棋就知道我剛才做的是壞事,因此導致這一切的前序動作也是壞的。價值函數讓你不必等到最後。假設你在做某種數學或程式設計的事情,你試圖探索一個特定的解決方案或方向。在思考了比如一千步之後,你得出結論這個方向沒有希望。一旦你得出這個結論,你就可以在一千個時間步之前,當你決定走這條路時,就已經得到一個獎勵訊號。你會說,“下次在類似情況下我不應該走這條路”,這早在你真正拿出提議的解決方案之前。Dwarkesh Patel這在 DeepSeek R1 的論文裡提到過——軌跡的空間太廣了,也許很難學習從中間軌跡到價值的對應。而且考慮到,例如在程式設計中,你會有一個錯誤的想法,然後你會回過頭去,改變一些東西。Ilya Sutskever這聽起來像是對深度學習缺乏信心。當然這可能很難,但沒有什麼深度學習做不到的。我的預期是價值函數應該是有用的,我完全預計它們將在未來被使用,如果不是已經在用的話。我提到的那個情感中樞受損的人的例子,更多是暗示也許人類的價值函數在某種重要方面受到情緒的調節,這是進化硬編碼的。也許這對人類在世界上有效行事很重要。Dwarkesh Patel這正是我打算問你的。關於價值函數的情緒有一些非常有趣的地方,那就是它們在如此有用的同時,理解起來卻相當簡單,這令人印象深刻。Ilya Sutskever我有兩個回應。我確實同意,與我們學習的東西以及我們正在討論的 AI 相比,情緒相對簡單。它們甚至簡單到也許你可以用人類可理解的方式將它們繪製出來。我覺得這樣做會很酷。但在實用性方面,我認為存在一種複雜性與魯棒性的權衡,複雜的東西可能非常有用,但簡單的東西在非常廣泛的情況下都非常有用。解釋我們所見現象的一種方式是,我們的情緒大多是從我們的哺乳動物祖先演化而來的,然後在我們成為原始人類時進行了一點微調,只是一點點。不過我們確實有相當數量的社會性情緒,這是哺乳動物可能缺乏的。但它們並不是非常複雜。正是因為它們不複雜,所以在這個與我們一直生活的世界截然不同的世界裡,它們依然能很好地為我們服務。實際上,它們也會犯錯。例如,我們的情緒……其實,我不知道。飢餓算是一種情緒嗎?這有爭議。但我認為,例如,我們直覺上的飢餓感在這個食物充足的世界裡並沒有成功地正確引導我們。Dwarkesh Patel人們一直在談論擴展資料、擴展參數、擴展算力。有沒有更通用的方式來思考擴展(scaling)?還有那些其他的擴展維度?Ilya Sutskever這裡有一個我認為可能是正確的視角。過去機器學習的工作方式是,人們只是修修補補,試圖得到有趣的結果。過去一直都是這樣。然後擴展的洞見出現了。Scaling Laws(擴展定律)、GPT-3,突然之間大家都意識到我們應該進行擴展。這是語言影響思維的一個例子。“Scaling”只是一個詞,但它是一個非常有力的詞,因為它告訴人們該做什麼。他們說,“讓我們試著擴展東西。”所以你會問,我們在擴展什麼?預訓練是要擴展的東西。它是一個特定的擴展配方。預訓練的巨大突破在於意識到這個配方是好的。你會說,“嘿,如果你把一些算力和一些資料混合到一個特定大小的神經網路中,你會得到結果。你知道只要按比例放大這個配方,你就會變得更好。”這也太棒了。公司喜歡這個,因為它提供了一種風險極低的方式來投資資源。投資研究要難得多。比較一下。如果你做研究,你需要說,“去吧研究員們,去研究並想出點什麼來”,對比“獲取更多資料,獲取更多算力”。你知道你會從預訓練中得到東西。確實,根據一些人在推特上的說法,看起來 Gemini 可能已經找到了一種從預訓練中獲得更多收益的方法。但在某個時刻,預訓練的資料會用完。資料顯然是有限的。接下來你做什麼?要麼你做某種增強版的預訓練,一種與以前不同的配方,要麼你做 RL,或者可能是其他東西。但現在算力很大,算力現在非常大,從某種意義上說,我們又回到了研究時代。也許換一種說法。直到 2020 年,從 2012 年到 2020 年,是研究時代。然後,從 2020 年到 2025 年,是擴展時代——也許加減一些誤差範圍——因為人們說,“這太驚人了。你必須擴展更多。繼續擴展。”這一個詞:擴展。但現在規模已經這麼大了。信念真的是“哦,它這麼大,但如果你有 100 倍以上,一切都會變得如此不同”嗎?肯定會有不同。但信念是只要把規模擴大 100 倍,一切都會發生質變嗎?我不認為這是真的。所以這又回到了研究時代,只是有了大電腦。Dwarkesh Patel這是一種非常有趣的說法。但讓我問你剛才提出的問題。我們在擴展什麼,擁有一個配方意味著什麼?我想我還不知道預訓練中存在的那種非常幹淨的、幾乎看起來像物理定律的關係。在資料、算力或參數與損失之間存在冪律關係。我們應該尋求什麼樣的關係,我們應該如何思考這個新配方可能是什麼樣子的?Ilya Sutskever我們已經見證了從一種類型的擴展向另一種類型的擴展的轉變,從預訓練到 RL。現在人們正在擴展 RL。根據人們在推特上的說法,他們在 RL 上花費的算力此時比預訓練還多,因為 RL 實際上可以消耗相當多的算力。你做很長的推演(rollouts),所以產生這些推演需要很多算力。然後你從每個推演中獲得相對較少的學習量,所以你真的可以花費很多算力。我甚至不會稱之為擴展。我會說,“嘿,你在做什麼?你做的事情是你最能產出的事情嗎?你能找到一種更有效利用算力的方法嗎?”我們之前討論過價值函數的事情。也許一旦人們擅長價值函數,他們將更有效地利用資源。如果你發現了一種完全不同的訓練模型的方法,你會說,“這是擴展還是僅僅是利用你的資源?”我認為這變得有點模棱兩可。某種意義上,當人們回到那時的研究時代,就是“讓我們試試這個、這個和這個。讓我們試試那個、那個和那個。哦,看,有趣的事情發生了。”我認為將會回歸到這種狀態。Dwarkesh Patel如果我們回到了研究時代,退一步說,我們需要最深入思考的配方部分是什麼?當你提到價值函數時,人們已經在嘗試當前的配方,比如用 LLM-as-a-Judge(大模型作為裁判)等等。你可以說那是一個價值函數,但聽起來你有更本質的想法。我們是否應該徹底重新思考預訓練,而不僅僅是在那個過程的末尾加入更多步驟?Ilya Sutskever關於價值函數的討論,我認為很有趣。我想強調,我認為價值函數會讓 RL 更有效率,我認為這很重要。但我認為任何你可以用價值函數做的事,你不用它也能做,只是更慢。我認為最根本的事情是,這些模型不知何故泛化能力比人類差得多。這非常明顯。這似乎是一個非常根本的事情。Dwarkesh Patel這就是關鍵:泛化。這有兩個子問題。一個是關於樣本效率:為什麼這些模型學習需要比人類多得多的資料?還有第二個問題。即使不談所需的資料量,為什麼教模型我們要的東西比教人類要難得多?對於人類,我們不一定需要一個可驗證的獎勵來……你現在可能正在指導一群研究人員,你和他們交談,向他們展示你的程式碼,向他們展示你是如何思考的。從中,他們學到了你的思維方式以及他們應該如何做研究。你不需要為他們設定一個可驗證的獎勵,比如“好,這是課程的下一部分,現在這是你課程的下一部分。哦,這次訓練不穩定。”沒有這種繁瑣的、定製的過程。也許這兩個問題實際上以某種方式相關,但我很想探討這第二件事,這更像是終身學習(continual learning),而第一件事感覺就像是樣本效率。Ilya Sutskever其實你可以思考,對人類樣本效率的一種可能的解釋是進化。進化給了我們少量最有用資訊的先驗。對於視覺、聽覺和運動這些東西,我認為有很強的理由證明進化給了我們很多。例如,人類的靈巧度遠遠超過……我是說,如果你在模擬中對機器人進行大量訓練,它們也能變得靈巧。但在現實世界中訓練機器人像人一樣快速掌握一項新技能似乎遙不可及。在這裡你可以說,“哦是的,運動能力。我們所有的祖先都需要極好的運動能力,比如松鼠。所以對於運動能力,也許我們有一些不可思議的先驗。”你可以為視覺提出同樣的理由。我相信 Yann LeCun 提出過一個觀點,孩子在 10 小時的練習後學會開車,這是真的。但我們的視覺太好了。至少對我來說,我記得我五歲的時候。那時候我對汽車非常興奮。我敢肯定,我五歲時的汽車識別能力已經足以用來開車了。作為一個五歲的孩子,你看不到那麼多資料。你大部分時間都待在父母家裡,所以資料多樣性很低。但你可以說也許那也是進化。但在語言、數學和程式設計方面,可能不是。Dwarkesh Patel它看起來仍然比模型好。顯然,模型在語言、數學和程式設計方面比普通人好。但它們在學習方面比普通人好嗎?Ilya Sutskever哦是的。哦是的,絕對的。我想說的是,語言、數學和程式設計——尤其是數學和程式設計——表明,無論是什麼讓人類擅長學習,可能不僅僅是一個複雜的先驗,而是更多的東西,某種根本性的東西。Dwarkesh Patel我不確定我理解了。為什麼會這樣?Ilya Sutskever考慮一項人們表現出某種巨大可靠性的技能。如果這項技能對我們的祖先在數百萬年、數億年裡都非常有用,你可以爭辯說,也許人類擅長它是因為進化,因為我們有一個先驗,一個以某種非常不明顯的方式編碼的進化先驗,不知何故使我們如此擅長它。但是,如果人們在一個直到最近才存在的領域表現出巨大的能力、可靠性、魯棒性和學習能力,那麼這更多地表明人們可能只是擁有更好的機器學習機制,句號。Dwarkesh Patel我們應該如何思考那是什麼?什麼是 ML 類比?這裡有幾件有趣的事情。它需要更少的樣本。它更像是無監督的。一個孩子學開車……孩子不學開車。一個青少年學開車並不是真的得到了某種預先建立的、可驗證的獎勵。它來自他們與機器和環境的互動。它需要的樣本少得多。它看起來更無監督。它看起來更魯棒?Ilya Sutskever魯棒得多。人類的魯棒性真的令人震驚。Dwarkesh Patel你有沒有一個統一的方式來思考為什麼所有這些事情同時發生?能夠實現類似這種東西的 ML 類比是什麼?Ilya Sutskever你一直在問的一件事是,青少年司機如何在沒有外部老師的情況下自我糾正並從經驗中學習?答案是他們有自己的價值函數。他們有一種普遍的感覺,順便說一下,這種感覺在人身上也非常魯棒。無論人類的價值函數是什麼,除了成癮等少數例外,它實際上非常非常魯棒。所以對於像學開車的青少年來說,他們開始開車,馬上就能感覺到自己開得怎麼樣,有多糟糕,多不自信。然後他們看到,“好的。”然後,當然,任何青少年的學習速度都太快了。10 個小時後,你就可以上路了。Dwarkesh Patel看起來人類有某種解決方案,但我很好奇他們是如何做到的,以及為什麼這這麼難?我們需要如何重新構想訓練模型的方式來實現這種可能?Ilya Sutskever這是一個很好的問題,這也是我有很多觀點的問題。但不幸的是,我們生活在一個並非所有機器學習想法都可以自由討論的世界裡,這就是其中之一。可能有一種方法可以做到。我認為這是可以做到的。人們就是這樣,我認為這證明了它是可以做到的。不過可能還有另一個阻礙,就是人類神經元進行的計算量可能比我們要多。如果是真的,如果那起到了重要作用,那麼事情可能會更困難。但無論如何,我確實認為這指向了某種機器學習原則的存在,對此我有自己的看法。但不幸的是,環境使得很難詳細討論。Dwarkesh Patel我很好奇。如果你說我們回到了研究時代,你在 2012 年到 2020 年就在那裡。如果我們要回到研究時代,現在的氛圍會是什麼樣的?例如,即使在 AlexNet 之後,用於運行實驗的算力也在不斷增加,前沿系統的規模也在不斷增加。你認為現在的研究時代是否仍然需要大量的算力?你認為這需要回到檔案館去閱讀舊論文嗎?當你在 Google、OpenAI 和史丹佛這些地方時,那時有更多的研究氛圍?我們在社區中應該期待什麼樣的事情?Ilya Sutskever擴展時代的一個後果是,擴展吸走了房間裡所有的空氣。因為擴展吸走了所有的空氣,每個人都開始做同樣的事情。我們到了這樣一個地步,世界上的公司比想法多得多。實際上關於這一點,矽谷有句俗話說,想法是廉價的,執行就是一切。人們常這麼說,這也確實有道理。但我看到有人在 Twitter 上說,“如果想法這麼廉價,怎麼沒人有想法呢?”我覺得這也是真的。如果你從瓶頸的角度思考研究進展,有幾個瓶頸。其中一個是想法,另一個是你實現它們的能力,這可能是算力也可能是工程。如果你回到 90 年代,假設有人有很好的想法,如果他們有更大的電腦,也許他們可以證明他們的想法是可行的。但他們做不到,所以他們只能做一個非常非常小的演示,無法說服任何人。所以瓶頸是算力。然後在擴展時代,算力增加了很多。當然,有個問題是需要多少算力,但算力是巨大的。算力大到你並不明顯需要更多的算力來證明某個想法。我給你一個類比。AlexNet 是在兩個 GPU 上建構的。那是它使用的總算力。Transformer 是在 8 到 64 個 GPU 上建構的。2017 年沒有任何單一的 Transformer 論文實驗使用的 GPU 超過 64 個,這大概相當於今天的兩個 GPU?ResNet 也是,對吧?你可以爭辯說 o1 推理並不是世界上最耗算力的東西。所以對於研究,你肯定需要一定量的算力,但這遠不意味著你需要有史以來絕對最大的算力來進行研究。你可能會爭辯,而且我認為這是真的,如果你想建構絕對最好的系統,那麼擁有更多的算力會有幫助。特別是如果每個人都在同一個範式內,那麼算力就成了巨大的差異化因素。Dwarkesh Patel我問你歷史是因為你當時真的在場。我不確定實際發生了什麼。聽起來使用最少的算力來開發這些想法是可能的。但 Transformer 並沒有立即變得出名。它成為了每個人開始做的事情,然後開始在其基礎上進行實驗和建構,因為它在更高層級的算力上得到了驗證。Ilya Sutskever沒錯。Dwarkesh Patel如果你在 SSI 有 50 個不同的想法,如果不擁有其他前沿實驗室那種算力,你怎麼知道那一個是下一個 Transformer,那一個是脆弱的?Ilya Sutskever我可以評論一下。簡短的評論是,你提到了 SSI。具體對我們來說,SSI 用於研究的算力真的不小。我想解釋一下為什麼。簡單的數學可以解釋為什麼我們擁有的研究算力比人們想像的要多。我會解釋。SSI 籌集了 30 億美元,這在絕對意義上是一筆巨款。但你會說,“看看其他籌集更多資金的公司。”但他們的大部分算力都用於推理(inference)。這些大數字,這些大額貸款,是專門用於推理的。這是第一點。第二,如果你想擁有一個進行推理的產品,你需要有龐大的工程師、銷售人員團隊。大量的研究需要致力於生產各種與產品相關的功能。所以當你看看實際上留給研究的是什麼時,差距就變得小得多了。另一件事是,如果你在做不同的事情,你真的需要絕對最大的規模來證明它嗎?我不認為這是真的。我認為在我們的案例中,我們有足夠的算力來證明,來說服我們自己和其他任何人,我們在做的事情是正確的。Dwarkesh Patel有公開估計稱,像 OpenAI 這樣的公司僅在實驗上每年就花費 50-60 億美元。這與他們在推理等方面的支出是分開的。所以看起來他們每年運行研究實驗的支出比你們的總資金還多。Ilya Sutskever我認為這是一個你用它做什麼的問題。這是一個你用它做什麼的問題。在他們的情況下,在其他人的情況下,對訓練算力有更多的需求。有更多不同的工作流,有不同的模態,只是有更多的東西。所以它變得碎片化了。Dwarkesh PatelSSI 將如何賺錢?Ilya Sutskever我對這個問題的回答是這樣的。現在,我們只專注於研究,然後這個問題的答案會自己顯現出來。我認為會有很多可能的答案。Dwarkesh PatelSSI 的計畫仍然是直通超級智能嗎?Ilya Sutskever也許。我認為這樣做有其優點。我認為這有很多優點,因為不受日常市場競爭的影響是非常好的。但我認為有兩個原因可能會導致我們改變計畫。一個是務實的,如果時間線變得很長,這是可能的。其次,我認為最強大、最好的 AI 在外面影響世界是有很大價值的。我認為這是一件有意義且有價值的事情。Dwarkesh Patel那為什麼你的默認計畫是直通超級智能?因為聽起來 OpenAI、Anthropic 以及所有其他公司,他們的明確想法是,“看,我們有越來越弱的智能,公眾可以適應並為此做好準備。”為什麼直接建構超級智能可能更好?Ilya Sutskever我會分別陳述支援和反對的理由。支援的理由是,人們在市場中面臨的挑戰之一是他們必須參與激烈的競爭(rat race)。這種競爭非常困難,因為它讓你面臨需要做出的艱難權衡。說“我們將把自己與這一切隔離開來,只專注於研究,只在準備好時才出來,而不是之前”是很好的。但反駁也是有效的,那是相反的力量。反駁是,“嘿,讓世界看到強大的 AI 是有用的。讓世界看到強大的 AI 是有用的,因為那是你能夠傳達它的唯一方式。”Dwarkesh Patel我想甚至不僅僅是你能夠傳達這個想法——Ilya Sutskever傳達 AI,不是想法。傳達 AI。Dwarkesh Patel你說的“傳達 AI”是什麼意思?Ilya Sutskever假設你寫了一篇關於 AI 的文章,文章說,“AI 將會是這樣,AI 將會是那樣,它會是這個。”你讀了之後說,“好的,這是一篇有趣的文章。”現在假設你看到一個 AI 做這個,一個 AI 做那個。這是無法比擬的。基本上我認為 AI 公開化有很大的好處,這將是我們不完全直通的一個理由。Dwarkesh Patel我想甚至不僅僅是那個,雖然我確實認為那是其中的重要部分。另一件大事是,我想不出人類工程和研究中有那一門學科,其最終產品主要是通過僅僅思考如何使其安全而變得更安全的,相比之下——為什麼今天的飛機每英里墜毀率比幾十年前低得多。為什麼現在在 Linux 中找 bug 比幾十年前難得多?我認為這主要是因為這些系統被部署到了世界上。你注意到了故障,這些故障被糾正了,系統變得更加健壯。我不確定為什麼 AGI 和超人類智能會有什麼不同,尤其是考慮到——我希望我們會談到這點——看起來超級智能的危害不僅僅是關於有一個惡意的回形針製造者。這是一個真正強大的東西,我們甚至不知道如何概念化人們如何與之互動,人們會用它做什麼。逐步接觸它似乎是分散其影響並幫助人們為此做好準備的更好方式。Ilya Sutskever嗯,我認為關於這一點,即使在直通方案中,你仍然會逐步發佈它,我是這樣想像的。漸進主義將是任何計畫的固有組成部分。只是問題在於你推出的第一件東西是什麼。這是第一點。第二,我相信你比其他人更提倡終身學習(continual learning),而且我實際上認為這是一件重要且正確的事情。原因如下。我給你另一個語言如何影響思維的例子。在這種情況下,我認為有兩個詞塑造了每個人的思維。第一個詞:AGI。第二個詞:預訓練。讓我解釋一下。AGI 這個術語,為什麼這個術語存在?這是一個非常特別的術語。它為什麼存在?有原因的。在我看來,AGI 這個術語之所以存在,與其說是因為它是某種智能終極狀態的非常重要、本質的描述,不如說它是因為它是對另一個存在的術語的反應,那個術語是“狹義 AI”(narrow AI)。如果你回到遊戲和 AI、跳棋 AI、國際象棋 AI、電腦遊戲 AI 的遠古歷史,每個人都會說,看這個狹義的智能。當然,國際象棋 AI 可以擊敗卡斯帕羅夫,但它不能做任何其他事情。它是如此狹隘,人工狹義智能。所以作為回應,作為對此的反應,有些人說,這不好。它太狹隘了。我們需要的是通用 AI,一個可以做所有事情的 AI。那個術語獲得了很多關注。第二個獲得很多關注的是預訓練,特別是預訓練的配方。我認為人們現在做 RL 的方式可能正在消除預訓練的概念印記。但預訓練有這種屬性。你做更多的預訓練,模型在所有方面都會變得更好,或多或少是一致的。通用 AI。預訓練產生 AGI。但是 AGI 和預訓練發生的事情是,在某種意義上它們超出了目標。如果你在預訓練的背景下思考“AGI”這個術語,你會意識到人類並不是一個 AGI。是的,肯定有技能的基礎,但人類缺乏大量的知識。相反,我們依賴終身學習。所以當你思考,“好吧,假設我們取得了成功,我們產生某種安全的超級智能。”問題是,你如何定義它?它會在終身學習曲線的那裡?我生產了一個超級聰明的 15 歲少年,非常渴望出發。他們知道的不多,是一個很好的學生,非常渴望。你去當程式設計師,你去當醫生,去學習。所以你可以想像部署本身將涉及某種學習試錯期。這是一個過程,而不是你扔出一個成品。Dwarkesh Patel我明白了。你是在暗示你指出的超級智能不是某種已經知道如何做經濟中每一項工作的成品思維。因為,比如說,最初的 OpenAI 章程或其他檔案定義 AGI 的方式是,它可以做每一項工作,人類能做的每一件事。你提議的是一種可以 學會 做每一項工作的思維,那就是超級智能。Ilya Sutskever是的。Dwarkesh Patel但是一旦你有了學習演算法,它就會像人類勞動力加入組織一樣被部署到世界上。Ilya Sutskever完全正確。Dwarkesh Patel看起來這兩種情況之一可能會發生,也許這兩種情況都不會發生。第一,這種超級高效的學習演算法變得超人,變得和你一樣好,甚至可能比你更好,在 ML 研究任務上。結果演算法本身變得越來越超人。另一個是,即使那沒有發生,如果你有一個單一的模型——這顯然是你的願景——模型的實例被部署到整個經濟中做不同的工作,學習如何做那些工作,在工作中不斷學習,學會任何人能學會的所有技能,但同時也學會所有技能,然後合併它們的學習成果,你基本上就有了一個功能上變得超級智能的模型,即使軟體沒有任何遞迴的自我改進。因為你現在有了一個可以做經濟中每一項工作的模型,而人類無法以同樣的方式合併我們的思想。所以你預計廣泛部署會帶來某種智能爆炸嗎?Ilya Sutskever我認為我們很可能會有快速的經濟增長。我認為隨著廣泛部署,你可以提出兩個相互衝突的論點。一個是,一旦你確實到了擁有一個可以快速學習做事的 AI 並且你有很多這樣的 AI 的地步,那麼將會有一股強大的力量將它們部署到經濟中,除非會有某種監管阻止它,順便說一句,可能會有。但是關於非常快速的經濟增長的想法,我認為從廣泛部署來看是非常可能的。問題是它會有多快。我認為這很難知道,因為一方面你有這個非常高效的工人。另一方面,世界真的很大,有很多東西,而那些東西以不同的速度移動。但另一方面,現在 AI 可以……所以我認為非常快速的經濟增長是可能的。我們將看到各種各樣的事情,比如不同的國家有不同的規則,那些規則更友好的國家,經濟增長會更快。很難預測。Dwarkesh Patel在我看來,這是一個非常不穩定的處境。在極限情況下,我們知道這應該是可能的。如果你有某種在學習方面和人類一樣好,但可以合併其大腦——以人類無法合併的方式合並不同實例——的東西,這似乎是一件物理上應該可能的事情。人類是可能的,數字電腦是可能的。你只需要把這兩者結合起來就能產生這個東西。看起來這種東西也非常強大。經濟增長是描述它的一種方式。戴森球也是很多經濟增長。但另一種說法是,你將在可能非常短的時間內擁有……你在 SSI 僱傭人,六個月後,他們可能就是淨產出的。人類學得很快,而這個東西正變得越來越聰明。你如何考慮讓這一切順利進行?為什麼 SSI 定位於能做好這件事?SSI 在那裡的計畫是什麼,這基本上就是我想問的。Ilya Sutskever我的想法發生變化的一種方式是,我現在更加重視 AI 的增量部署和提前部署。關於 AI 的一件非常困難的事情是,我們正在談論尚不存在的系統,很難想像它們。我認為正在發生的一件事是,實際上很難 感覺到 AGI。很難感覺到 AGI。我們可以談論它,但這就像談論當你年老體弱時是什麼感覺。你可以談論,你可以試圖想像,但這很難,你會回到那不是事實的現實中。我認為許多圍繞 AGI 及其未來力量的問題源於這樣一個事實:很難想像。未來的 AI 會有所不同。它將會很強大。確實,AI 和 AGI 的問題是什麼?整個問題就是力量。整個問題就是力量。當力量真的很大時,會發生什麼?我在過去一年中改變主意的一種方式——這種改變,我會稍微避險一下,可能會反向傳播到我們公司的計畫中——是,如果很難想像,你做什麼?你必須展示這個東西。你必須展示這個東西。我堅持認為,大多數從事 AI 工作的人也無法想像它,因為它與人們日常看到的東西太不同了。我確實堅持,這是我的一個預測。我堅持認為隨著 AI 變得更強大,人們會改變他們的行為。我們將看到各種前所未有的事情,這些事情現在還沒有發生。我會舉一些例子。我認為不管是好是壞,前沿公司將在發生的事情中扮演非常重要的角色,政府也是如此。我認為你會看到的事情,你已經看到了開端,那就是作為激烈競爭對手的公司開始在 AI 安全方面進行合作。你可能已經看到 OpenAI 和 Anthropic 邁出了一小步,但這以前是不存在的。這是我在大約三年前的一次演講中預測的事情,這種事情會發生。我還堅持認為,隨著 AI 繼續變得更強大,更明顯地強大,政府和公眾也會渴望做點什麼。我認為這是一股非常重要的力量,即展示 AI。這是第一點。第二點,好的,AI 正在被建構。需要做什麼?我堅持認為會發生的一件事是,目前,從事 AI 工作的人,我堅持認為 AI 並不讓人感到強大,是因為它的錯誤。我確實認為在某個時刻,AI 會開始讓人感到真正強大。我認為當這種情況發生時,我們將看到所有 AI 公司對待安全的方式發生巨大變化。他們會變得更加偏執。我這是作為一個預測說出來的,我們會看到這種事發生。我們要看看我是不是對的。但我認為這是會發生的,因為他們會看到 AI 變得更強大。目前發生的一切,我堅持認為是因為人們看著今天的 AI,很難想像未來的 AI。還有第三件事需要發生。我是從更廣泛的角度說的,不僅僅是從 SSI 的角度,因為你問到了我們公司。問題是,公司應該渴望建立什麼?他們應該渴望建立什麼?有一個每個人都被鎖定的大主意,那就是自我改進的 AI。為什麼會這樣?因為想法比公司少。但我堅持認為有更好的東西可以建立,我認為每個人都會想要那個。那就是穩健地對齊以關愛感知生命(sentient life)的 AI。我想特別指出,有理由認為建立一個關心感知生命的 AI 比建立一個只關心人類生命的 AI 更容易,因為 AI 本身將是有感知的。如果你想想鏡像神經元和人類對動物的同理心,你可能會說這不夠大,但它確實存在。我認為這是一種湧現屬性,源於我們用模擬自己的同一回路來模擬他人,因為那是最高效的做法。Dwarkesh Patel即使你讓 AI 關心感知生物——如果真的解決了對齊問題,我不清楚這是否就是你應該嘗試做的——情況仍然是,大多數感知生物將是 AI。最終會有數兆、數千兆的 AI。人類將是感知生物中非常小的一部分。所以如果不清楚目標是對這個未來文明進行某種人類控制,那麼我不清楚這是不是最好的標準。Ilya Sutskever這是真的。它可能不是最好的標準。我會說兩點。第一,關心感知生命,我認為有其優點。應該被考慮。我認為如果有一些公司在處於這種情況下時可以使用的簡短想法清單,那會有所幫助。這是第二點。第三,我認為如果最強大的超級智能的力量以某種方式被設定上限,那將真的有實質性的幫助,因為這將解決很多這些擔憂。關於如何做到這一點的問題,我不確定,但我認為當你談論真正、真正強大的系統時,那將有實質性的幫助。Dwarkesh Patel在我們繼續對齊討論之前,我想深入探討一下這一點。頂部有多少空間?你是如何看待超級智能的?利用這個學習效率的想法,你認為它可能只是在學習新技能或新知識方面極快嗎?它是否只是擁有更大的策略池?中心是否有一個單一的、有凝聚力的“它”更強大或更大?如果是這樣,你是否想像這與其餘人類文明相比會像神一樣,還是它只是感覺像另一個智能體,或另一組智能體?Ilya Sutskever這是不同人有不同直覺的領域。我認為它肯定會非常強大。我認為最有可能發生的是,大約在同一時間會有多個這樣的 AI 被創造出來。我認為如果叢集足夠大——比如如果叢集真的是大陸級的——那個東西可能會非常強大,確實如此。如果你真的擁有一個大陸級的叢集,那些 AI 可能會非常強大。我能告訴你的是,如果你在談論極其強大的 AI,真正極其強大的,如果它們能以某種方式受到限制,或者有某種協議之類的東西,那就太好了。超級智能的擔憂是什麼?解釋這種擔憂的一種方式是什麼?如果你想像一個足夠強大的系統,真的足夠強大——你可以說你需要做一些理智的事情,比如以一種非常專一的方式關心感知生命——我們可能不喜歡結果。這就是它的本質。順便說一句,也許答案是你不用通常意義上的 RL 智能體。我會指出幾件事。我認為人類是半 RL 智能體。我們追求獎勵,然後情緒或其他東西讓我們對獎勵感到厭倦,我們追求不同的獎勵。市場是一種非常短視的智能體。進化也是一樣。進化在某些方面非常聰明,但在其他方面非常愚蠢。政府被設計成三個部分之間永無止境的鬥爭,這也是一種效果。所以我想像這樣的事情。另一件讓這個討論變得困難的事情是,我們談論的是不存在的系統,我們不知道如何建構。那是另一件事,實際上這也是我的信念。我認為人們現在正在做的事情會走一段距離,然後逐漸平息。它會繼續改進,但它也不會是“那個東西”。我們不知道如何建構“那個東西”,很多都取決於理解可靠的泛化。我還要說另一件事。你可以說導致對齊困難的原因之一是,你學習人類價值觀的能力是脆弱的。然後你最佳化它們的能力是脆弱的。你實際上學會了去最佳化它們。你難道不能說,“這些不都是不可靠泛化的例子嗎?”為什麼人類似乎泛化得這麼好?如果泛化能力好得多呢?在這種情況下會發生什麼?會有什麼效果?但這些問題目前仍然無法回答。Dwarkesh Patel人們該如何思考 AI 進展順利是什麼樣子的?你已經勾勒了 AI 可能如何演變。我們將擁有這類終身學習智能體。AI 將非常強大。也許會有許多不同的 AI。你怎麼看待許多大陸級算力的智能體四處遊蕩?那有多危險?我們如何讓它變得不那麼危險?我們如何以一種保護平衡的方式做到這一點,即使外面可能有未對齊的 AI 和壞人?Ilya Sutskever這也是我喜歡“關心感知生命的 AI”的一個原因。我們可以爭論它是好是壞。但如果前 N 個這樣的劇變性系統真的關心、愛護人類或者什麼的,關心感知生命,顯然這也就必須實現。這需要被實現。所以如果前 N 個系統實現了這一點,那麼我可以看到它進展順利,至少在相當長的一段時間內。然後就是長期會發生什麼的問題。你如何實現長期均衡?我認為那裡也有一個答案。我不喜歡這個答案,但它需要被考慮。長期來看,你可能會說,“好吧,如果你有一個強大的 AI 存在的世界,短期內,你可以說你有普遍高收入。你有普遍高收入,我們都過得很好。”但佛教徒怎麼說?“變化是唯一的常數。”事情會變。有某種政府、政治結構的東西,它會變,因為這些東西有保質期。一些新的政府形式出現了,它運作,然後過了一段時間它停止運作。這是我們一直看到發生的事情。所以我認為對於長期均衡,一種方法是你可以說也許每個人都會有一個 AI 聽命於他們,這很好。如果這能無限期維持下去,那是真的。但這的缺點是,然後 AI 去為這個人賺錢並在政治領域倡導他們的需求,也許然後寫一份小報告說,“好吧,這是我所做的,這是情況,”然後人說,“太棒了,繼續保持。”但人不再是參與者了。然後你可以說這是一個不穩定的處境。我要先說我不喜歡這個解決方案,但它是一個解決方案。解決方案是如果人們通過某種 Neuralink++ 變成半 AI。因為結果將會是,現在 AI 理解了一些東西,我們也理解了它,因為現在理解是全盤傳遞的。所以現在如果 AI 處於某種情況,你自己也完全參與了那種情況。我認為這是均衡的答案。Dwarkesh Patel我想知道,數百萬年——或者在很多情況下是數十億年——前在一個完全不同的環境中演化出來的情緒,至今仍如此強烈地指導著我們的行動,這是否是對齊成功的一個例子。為了說明我的意思——我不知道稱之為價值函數還是獎勵函數更準確——腦幹有一個指令說,“與更成功的人交配。”皮層是理解現代背景下成功意味著什麼的部分。但腦幹能夠對齊皮層並說,“無論你認為成功是什麼——我不夠聰明去理解那是什麼——你仍然要追求這個指令。”Ilya Sutskever我認為有一個更普遍的觀點。實際上進化如何編碼高層級的慾望真的很神秘。很容易理解進化如何賦予我們對聞起來好的食物的慾望,因為氣味是一種化學物質,所以只要追求那種化學物質就行了。很容易想像進化做那件事。但進化也賦予了我們所有這些社會慾望。我們真的很在乎被社會積極看待。我們在乎擁有良好的地位。所有這些我們擁有的社會直覺,我強烈感覺它們是內建的。我不知道進化是怎麼做到的,因為那是在大腦中表徵的一個高層級概念。比方說你在乎某種社會事物,這不像氣味那樣是低層級訊號。這不是某種有感測器對應的東西。大腦需要做大量的處理,拼湊大量的資訊碎片來理解社會上正在發生什麼。不知何故進化說,“這就是你應該關心的。”它是怎麼做到的?而且它做得很快。所有這些我們在乎的複雜的社會事物,我認為它們演化得相當近。進化很容易就硬編碼了這種高層級的慾望。我不知道有什麼好的假設能解釋它是如何完成的。我有過一些反覆思考的想法,但沒有一個是令人滿意的。Dwarkesh Patel特別令人印象深刻的是,如果是你在有生之年學會的慾望,那是有道理的,因為你的大腦是智能的。你有能力學會智能的慾望是有道理的。也許這不是你的觀點,但理解它的一種方式是,慾望內建於基因組中,而基因組並不智能。但你卻能描述這個特徵。甚至都不清楚你是如何定義這個特徵的,而你卻能把它建構進基因裡。Ilya Sutskever基本上是這樣,或者我也許換個說法。如果你思考基因組可用的工具,它說,“好吧,這是建構大腦的配方。”你可以說,“這是把多巴胺神經元連接到氣味感測器的配方。”如果氣味是某種好的氣味,你就想吃它。我可以想像基因組做那件事。我聲稱這(社會慾望)更難想像。更難想像基因組說你應該關心你的整個大腦、或者大腦的一大塊所做的某種複雜計算。這只是我的主張。我可以告訴你一個猜測,它是如何做到的,我也會解釋為什麼這個猜測可能是錯的。大腦有腦區。我們有皮層。它有所有那些腦區。皮層是均勻的,但腦區和皮層中的神經元大多隻與其鄰居對話。這解釋了為什麼會有腦區。因為如果你想做某種語音處理,所有做語音的神經元需要互相交流。因為神經元大多隻能與附近的鄰居交流,所以它必須是一個區域。所有的區域在人與人之間大多位於同一個地方。所以也許進化硬編碼了大腦上的一個物理位置。所以它說,“哦,當大腦的 GPS 坐標某某某,當那裡點火時,那就是你應該關心的。”也許那是進化所做的,因為那在進化的工具箱之內。Dwarkesh Patel是的,儘管有些例子,例如生來失明的人,他們皮層的那個區域被另一種感官接管了。我不知道,但如果那些需要視覺訊號的慾望或獎勵函數對於那些皮層區域被徵用的人不再起作用,我會感到驚訝。例如,如果你不再有視覺,你是否仍然能感覺到我希望周圍的人喜歡我這種感覺,通常這也有視覺線索。Ilya Sutskever我完全同意這一點。我認為對這個理論有一個更強的反駁。有些人童年時期被切除了一半大腦(大腦半球切除術),他們仍然擁有所有的腦區。但它們不知何故都移動到了一個半球,這表明腦區的位置不是固定的,所以那個理論是不正確的。如果是真的那就太酷了,但它不是。所以我認為這是一個謎。但這是一個有趣的謎。事實是,不知何故進化能夠賦予我們非常非常可靠地關心社會事物的能力。即使是有各種奇怪的精神狀況、缺陷和情緒問題的人也傾向於關心這個。Dwarkesh PatelSSI 計畫做什麼不同的事情?大概你們的計畫是當那個時刻到來時成為前沿公司之一。大概你創立 SSI 是因為你想,“我覺得我有一種方法可以安全地做這件事,而其他公司沒有。”那個區別是什麼?Ilya Sutskever我會這樣描述,有一些我認為有前途的想法,我想調查它們,看看它們是否真的有前途。真的就這麼簡單。這是一種嘗試。如果這些想法被證明是正確的——我們討論的這些圍繞理解泛化的想法——那麼我認為我們將擁有有價值的東西。它們會被證明是正確的嗎?我們在做研究。我們要實事求是地作為一家“研究時代”的公司。我們在取得進展。實際上我們在過去一年取得了相當不錯的進展,但我們需要繼續取得更多進展,更多研究。這就是我的看法。我看作是一種嘗試,試圖成為一個聲音和一個參與者。Dwarkesh Patel你的聯合創始人和前 CEO 最近離開去了 Meta,人們問,“好吧,如果有大量的突破正在發生,這看起來似乎是不太可能發生的事情。”我想知道你如何回應。Ilya Sutskever對此,我只想提醒幾個可能被遺忘的事實。我認為這些提供背景的事實解釋了情況。背景是我們當時正以 320 億美元的估值融資,然後 Meta 進來提議收購我們,我拒絕了。但在某種意義上,我的前聯合創始人同意了。結果,他也能夠享受到大量的近期流動性,他是 SSI 唯一加入 Meta 的人。Dwarkesh Patel聽起來 SSI 的計畫是當你到達人類歷史這一非常重要的時期,即擁有超人智能時,成為一家前沿公司。你有關於如何讓超人智能順利發展的想法。但其他公司也會嘗試他們自己的想法。是什麼讓 SSI 使超級智能順利發展的方法與眾不同?Ilya Sutskever主要讓 SSI 與眾不同的是其技術方法。我們有不同的技術方法,我認為它是值得的,我們正在追求它。我堅持認為最終會有戰略的趨同。我認為會有戰略的趨同,在某個時刻,隨著 AI 變得更強大,對每個人來說或多或少都會變得清晰,戰略應該是什麼。它應該是這樣的:你需要找到某種方式互相交談,你希望你的第一個真正的超級智能 AI 是對齊的,並以某種方式關心感知生命、關心人類、民主,諸如此類,某種組合。我認為這是每個人都應該爭取的條件。這就是 SSI 正在爭取的。我認為這一次,如果還沒發生的話,所有其他公司都會意識到他們正在朝著同一個目標努力。我們拭目以待。我認為隨著 AI 變得更強大,世界將真正改變。我認為事情會真的很不同,人們的行為也會真的很不同。Dwarkesh Patel說到預測,你對你描述的這個系統——它可以像人類一樣學習並因此隨後變成超人——的預測是什麼?Ilya Sutskever我認為大概 5 到 20 年。Dwarkesh Patel5 到 20 年?Ilya Sutskever嗯。Dwarkesh Patel我想展開看看你可能如何看待未來的到來。就像,我們還有幾年時間,其他公司繼續當前的方法並停滯不前。“停滯不前”在這裡是指他們的收入不超過幾千億?你如何思考停滯不前意味著什麼?Ilya Sutskever我認為停滯不前看起來會……在所有不同的公司看來都非常相似。可能是這樣的。我不確定,因為即使停滯不前,我認為這些公司也能創造驚人的收入。也許不是利潤,因為他們需要努力使自己與彼此區分開來,但收入肯定是有的。Dwarkesh Patel但在你的模型中有些東西暗示,當正確的解決方案真的出現時,所有公司之間會有趨同。我很好奇你為什麼認為會這樣。Ilya Sutskever我更多是在談論對齊策略的趨同。我認為最終技術方法的趨同可能也會發生,但我指的是對齊策略的趨同。到底應該做什麼?Dwarkesh Patel我只是想更好地理解你如何看待未來的展開。目前,我們有這些不同的公司,你預計他們的方法會繼續產生收入但達不到這種類人學習者。所以現在我們有這些不同的公司分支。有你們,有 Thinking Machines,還有一堆其他實驗室。也許其中一個找到了正確的方法。但是他們產品的發佈會讓其他人清楚如何做這件事。Ilya Sutskever我認為怎麼做並不清楚,但有些不同的東西是可能的這一點會變得清楚,這就是資訊。人們隨後會試圖弄清楚那是如何工作的。不過我確實認為,這裡沒有提到、沒有討論的一件事是,隨著 AI 能力的每一次提升,我認為做事的方式會有某種變化,但我不知道具體是那些變化。我認為這會很重要,但我無法確切拼出那是什麼。Dwarkesh Patel默認情況下,你會預期擁有那個模型的公司會獲得所有這些收益,因為他們擁有在世界上積累技能和知識的模型。有什麼理由認為這種好處會被廣泛分配,而不僅僅是最終落在最先讓這個終身學習循環運轉起來的模型公司手中?Ilya Sutskever我認為會發生以下情況。第一,讓我們看看過去的 AI 是如何發展的。一家公司取得了一項進展,另一家公司爭先恐後,在一段時間後也搞出了一些類似的東西,他們開始在市場上競爭並將價格壓低。所以我認為從市場角度來看,類似的事情也會發生。順便說一句,我們談論的是美好的世界。什麼是美好的世界?就是我們擁有這些強大的人類般的學習者,它們也是……順便說一下,也許還有一件事我們沒有討論,關於超級智能 AI 的規格,我認為值得考慮。那就是你把它做成狹義的,它可以同時是有用的和狹義的。你可以有很多狹義的超級智能 AI。但假設你有很多這樣的 AI,你有一家公司從中賺取大量利潤。然後你有另一家公司進來開始競爭。競爭的方式將通過專業化進行。競爭喜歡專業化。你在市場上看到這一點,你在進化中也看到這一點。你會有很多不同的利基市場,你會有很多佔據不同利基市場的不同公司。在這個世界上,我們可能會說一家 AI 公司在某些真正複雜的經濟活動領域要好得多,而另一家公司在另一個領域更好。第三家公司非常擅長訴訟。Dwarkesh Patel這難道不與類人學習所暗示的相矛盾嗎?即它可以學習……Ilya Sutskever它可以,但你有積累的學習。你有巨大的投資。你花費了大量的算力才變得非常非常優秀,在這個事情上真正非凡。別人花費了大量的算力和大量的經驗才在其他事情上變得非常優秀。你應用了大量的人類學習才到達那裡,但現在你處於這個高點,別人會說,“看,我不想從頭開始學你已經學過的東西。”Dwarkesh Patel我想這需要許多不同的公司同時開始擁有類人終身學習智能體,以便他們可以在不同的分支開始不同的樹搜尋。但是,如果一家公司首先獲得了那個智能體,或者首先獲得了那個學習者,確實看起來……嗯,如果你只考慮經濟中的每一份工作,讓一個實例學習每一份工作對於一家公司來說似乎是可行的。Ilya Sutskever這是一個有效的論點。我的強烈直覺是,事情不會這樣發展。論點說它會這樣發展,但我的強烈直覺是它不會這樣發展。理論上,理論和實踐沒有區別。在實踐中,是有區別的。我認為這將是其中之一。Dwarkesh Patel許多人的遞迴自我改進模型字面上、明確地指出,我們將在伺服器中有 100 萬個 Ilya,他們會想出不同的想法,這將導致超級智能非常快地湧現。你對你正在做的事情的可平行化有某種直覺嗎?複製 Ilya 的收益是什麼?Ilya Sutskever我不知道。我認為肯定會有收益遞減,因為你想要思維不同的人,而不是相同的人。如果有我的字面副本,我不確定你會得到多少增量價值。思維不同的人,那才是你想要的。Dwarkesh Patel為什麼如果你看不同的模型,即使是由完全不同的公司發佈的,可能在不重疊的資料集上訓練的,LLM 彼此之間的相似程度實際上是瘋狂的?Ilya Sutskever也許資料集並不像看起來那樣不重疊。Dwarkesh Patel但在某種意義上,即使個人可能不如未來的 AI 那麼多產,也許有些道理是人類團隊比 AI 團隊擁有更多的多樣性。我們如何引發 AI 之間有意義的多樣性?我認為僅僅提高溫度(temperature)只會導致胡言亂語。你想要更像是不同的科學家有不同的偏見或不同的想法。你如何在 AI 智能體之間獲得那種多樣性?Ilya Sutskever我相信,沒有多樣性的原因是預訓練。所有預訓練模型幾乎都是一樣的,因為它們在相同的資料上進行預訓練。現在的 RL 和後訓練(post-training)是一些差異化開始出現的地方,因為不同的人提出了不同的 RL 訓練。Dwarkesh Patel我過去聽你暗示過自我博弈(self-play)是一種獲取資料或將智能體與同等智能的其他智能體匹配以啟動學習的方式。我們應該如何思考為什麼沒有關於這種東西在 LLM 上起作用的公開提議?Ilya Sutskever我會說有兩點。我認為自我博弈有趣的原因是因為它提供了一種僅使用算力而不使用資料來建立模型的方法。如果你認為資料是最終瓶頸,那麼僅使用算力就非常有趣。這就是讓它有趣的原因。問題是自我博弈,至少在過去的做法中——當你有以某種方式相互競爭的智能體時——它只對發展一套特定的技能有好處。它太狹窄了。它只對談判、衝突、某些社交技能、戰略制定那類東西有好處。如果你關心這些技能,那麼自我博弈將是有用的。實際上,我認為自我博弈確實找到了歸宿,只是形式不同。所以像辯論、證明者-驗證者(prover-verifier),你有某種 LLM-as-a-Judge(大模型作為裁判),它也被激勵去發現你工作中的錯誤。你可以說這不完全是自我博弈,但我相信這是人們正在做的一種相關的對抗性設定。真正的自我博弈是智能體之間更普遍競爭的一個特例。對競爭的自然反應是試圖與眾不同。所以如果你把多個智能體放在一起,你告訴他們,“你們都需要處理某個問題,你是一個智能體,你在檢查其他人正在做什麼,”他們會說,“好吧,如果他們已經採取了這種方法,我不清楚我也應該追求它。我應該追求一些差異化的東西。”所以我認為像這樣的東西也可以為方法的多樣性創造激勵。Dwarkesh Patel最後一個問題:什麼是研究品味(research taste)?你顯然被認為是世界上 AI 研究品味最好的人。你是深度學習歷史上發生的那些最重大事件的合著者,從 AlexNet 到 GPT-3 等等。它是什麼,你如何描述你是如何想出這些主意的?Ilya Sutskever關於這一點我可以評論我自己。我認為不同的人做法不同。有一件事指引著我個人,那就是通過思考人類是怎樣的,但要正確地思考,來形成 AI 應該是怎樣的審美。很容易不正確地思考人類是怎樣的,但正確地思考人類意味著什麼?我給你舉幾個例子。人工神經元的想法直接受到大腦的啟發,這是一個偉大的想法。為什麼?因為你會說大腦有所有這些不同的器官,它有褶皺,但褶皺可能並不重要。為什麼我們認為神經元重要?因為有很多神經元。這感覺是對的,所以你想要神經元。你想要某種局部的學習規則來改變神經元之間的連接。大腦這樣做感覺是合理的。分佈式表徵的想法。大腦對經驗做出反應,因此我們的神經網路應該從經驗中學習的想法。大腦從經驗中學習,神經網路應該從經驗中學習。你會問自己,有些東西是根本的還是非根本的?事物應該是怎樣的。我認為這對我指引頗多,從多個角度思考,幾乎是在尋找美,美和簡單。醜陋,沒有醜陋的容身之地。它是美、簡單、優雅、來自大腦的正確靈感。所有這些東西都需要同時存在。它們越是同時存在,你就越能對一種自頂向下的信念充滿信心。自頂向下的信念是當實驗與你相悖時支撐你的東西。因為如果你總是相信資料,嗯,有時候你可能在做正確的事情,但有個 bug。但你不知道有個 bug。你怎麼分辨有沒有 bug?你怎麼知道你是應該繼續偵錯還是斷定這是錯誤的方向?靠的是自頂向下。你會說事情必須是這樣的。像這樣的東西必須行得通,因此我們要繼續前進。那就是自頂向下,它是基於這種多層面的美和受大腦啟發而來的。Dwarkesh Patel好,我們就聊到這裡 (AI寒武紀)
《三接工程爆百億灌水爭議 黃世聰:國營事業變成提款機?!》有媒體揭露中油第三座液化天然氣接收站(三接)工程涉浮報百億元預算、錄音檔直指中油高層指示「中油不缺錢」,引發輿論震撼。《聰明理財大小世》主持人黃世聰以「三接工程浮報百億,用人命堆出的沉箱,誰在撈?」為題,深入剖析這起被形容為「百億灌水、七命沉箱」的重大弊案,直言:「能源轉型變成黑金轉型,國營事業竟成了貪腐提款機。」黃世聰在節目一開場就指出,三接原被視為北台灣供氣與淨零轉型的重要工程,如今卻被揭發預算從94億元暴增至253億元。一句『中油不缺錢』,讓預算暴漲三倍,這不只是傲慢,而是制度的腐蝕。他強調,中油身為國營企業,理應以最高標準自律,「但現在看來,三接不是能源建設,而是利益建設。」黃世聰依據媒體曝光的錄音內容,直指中油高層在招標前與廠商私下會談,嫌報價太低並指示「可以再報高一點」。業者原報94億、再報120億與150億都被駁回,最終在中油授意下報到253億得標。黃世聰分析:「這樣的對話,形同官商合演預算灌水劇本。」但灌水卻灌出七條人命,黃世聰接著揭露三接長期的工安悲劇,七年之間有七人死於工安,2019年台北港沉箱意外,7人落水、3死;2024年初一名泰籍工人墜入沉箱身亡;同年11月兩名外籍工人遭瘋狗浪沖走;2025年7月又有潛水員水下昏迷送醫不治。勞動部職安署曾發函中油要求「扣款、撤人、終止契約」,但承包商皇昌營造仍未遭撤換。黃世聰痛批:「七年七命、卻沒有七次改善,用人命堆出的沉箱,難道沒有人該負責嗎?」節目進一步揭露承包商皇昌營造的政商網絡。主持人指出,皇昌董事長江程金早年與前總統陳水扁在看守所有「同窗情誼」,阿扁任內標下多項北市重大工程;柯文哲任內又接連得標萬大線捷運、環南市場與世大運選手村,被立委稱為「柯友友」。近年江程金更因京華城案遭北檢傳喚。黃世聰指出:「從阿扁、柯P到中油,皇昌永遠是贏家,換了政府,沒換手法。」黃世聰在節目尾聲還特別呼籲,中油一邊喊能源轉型,一邊讓貪腐轉型;一邊說不缺錢,一邊漲電價。這樣的國營事業,是全民的恥辱。三接工程本該守護能源安全,如今卻成為黑箱、死人、浮報的代名詞。能源轉型要的是綠電,不是黑金;要的是安全,不是貪婪。若檢調不查,人民會記得誰讓沉箱變成了貪腐的墳場。想了解更多精彩內容,歡迎持續收看《品觀點》網路節目《聰明理財大小世》!*投資警語:投資一定有風險,投資有賺有賠,投資前應檢視自身能力。