#工程
184項!2026年上海市重大工程項目清單公佈
市發展改革委介紹,2026年上海市重大工程項目清單公佈!2026年市重大工程計畫安排正式項目184項,其中科技產業類62項,社會民生類29項,生態文明建設類13項,城市基礎設施類68項,城鄉融合與鄉村振興類12項;另計畫安排預備項目14項。詳見↓科技產業類(62項)計畫建成9項:國家海底長期科學觀測系統、臨港實驗室臨港園區項目、浦江實驗室、聯影醫療生產研發基地、先聲藥業(中國)研發中心項目等。計畫新開工9項:深遠海全天候駐留浮式研究設施項目、延鋒安亭新基地建設項目、人本股份軸承全球研發總部和超級智能工廠項目、元創科芯零部件及系統項目、錦江樂園改造更新工程等。在建項目44項:上海硬X射線自由電子雷射裝置項目、磁-慣性約束聚變能源系統關鍵物理技術項目、中航商用航空發動機公司產業基地建設項目、中國商用飛機公司總裝製造中心浦東基地建設項目、大型綠色資料中心(中國移動、騰訊、阿里巴巴)等。社會民生類(29項)計畫建成7項:上海體育學院楊浦校區改擴建、上海電力大學臨港校區三期、上海海事大學臨港校區拓展工程項目、上海市公共衛生臨床中心應急醫學中心項目、上海臨床研究中心新建工程、上海市胸科醫院心胸疾病臨床醫學中心、文化軟實力支撐提升項目等。計畫新開工3項:華東師大臨港校區、復旦大學附屬腫瘤醫院醫學中心二期工程、市六醫院代謝性疾病診療中心。在建項目19項:立信會計金融學院浦東新校區、華東政法大學長寧校區改擴建工程、復旦大學附屬中山醫院國家醫學中心建設項目、復旦大學附屬眼耳鼻喉科醫院浦江院區二期工程、上海工業博物館、文化科技原創內容孵化基地等。生態文明建設類(13項)在建項目13項:黃浦江中上游堤防防洪能力提升工程、吳淞江工程(新川沙河-練祁河、練祁河-蕰藻濱、新川沙河段)、淀山湖生態環境整治等。城市基礎設施類(68項)計畫建成3項:G228公路(上海浙江省界-南蘆公路)、羅涇港區集裝箱碼頭改造二期工程、S4公路(奉浦東橋和接線工程)。計畫新開工4項:G50高速公路改建工程、S26公路(省界-G15公路)改建工程、南北通道、長橋等五廠周邊排水系統提標工程。在建項目61項:上海LNG站線擴建、漕涇綜合能源中心二期、浦東機場四期擴建及配套工程、東方樞紐上海東站及配套工程、市域線嘉閔線及北延伸、漕寶路快速路、龍水南路越江隧道等。城鄉融合與鄉村振興類(12項)計畫建成3項:上海市第一人民醫院南部院區二期擴建工程、第六人民醫院臨港院區二期擴建工程、上海交通大學醫學院附屬瑞金醫院金山院區。在建項目9項:岳陽醫院松江院區、崇明世界級生態島建設、北青公路(外青松公路-華徐公路)改擴建工程等。預備項目(14項)預備項目是指項目現階段手續尚未齊全,待齊全後近期準備實施的項目。 (上海樓市情報)
ChatGPT背後的中國工程師曝光!不是清華姚班的...
在華人如雲的OpenAI,不少人或許聽過清華姚班大神陳立傑或姚順雨的名號,但鮮少有人知曉翁家翌的名字。他不是競賽金牌得主,也不是清華姚班神話,在博士遍地的AI圈裡,他是極少數碩士生。近日,他在一個播客採訪中首次講述求學經歷和在OpenAI工作細節,外界才知道到,如此低調的他,竟是OpenAI各大核心模型的幕後推手。翁家翌拒絕DeepSeek,在2022年加入OpenAI,全程深度參與了ChatGPT系列幾乎所有關鍵大模型的強化學習、後訓練和基礎設施搭建。從我們熟知的爆款ChatGPT初始版本上線(基於GPT-3.5),到GPT-4、GPT-4V、GPT-4o,再到GPT-5等,都有這位中國工程師的貢獻。(圖源|翁家翌個人網站)在成為OpenAI研發工程師之前,他就潛水在各大技術論壇,用開源資料和自研工具默默影響過無數人。疫情期間刷屏網路的美簽網站tuixue,正是出自他之手。兩個多小時的播客聽下來,許多人被他思考的深度、表達的克制和謙虛的態度圈粉,更重要的是,翁家翌的成長之路,也給無數中產家庭的孩子點亮了燈。在AI圈天才少年的光環下,求學期間的翁家翌顯得格外慢熱。回想小時候,翁家翌說:“我學新東西,經常要花別人兩三倍的時間。”這個福建95後,小時候被爸媽拉去聽了某進修校的奧數課和語文課,此後一發不可收愛上奧數,從小學一年級到中學從未停止過。小翁家翌是數學口算小神童,同齡人剛做到一半,他不過腦就能得到正確答案。但他又是個龜速學習者,遇到新概念,需花大量時間和精力建構知識樹,徹底理解過後才能上手實踐。小學語文背誦,別人早背熟了,他還在琢磨記憶法,磕磕巴巴。但一旦掌握了,一覺睡醒也能倒背如流。“因為慢,我練習跆拳道時,一到上場實戰就被別人揍。”他笑著回憶。圖源unsplash正所謂笨鳥先飛,提前學成了翁家翌生存策略。他初中時自學高中數學,遇到難題追著老師問,初二把高中數學啃完,初三又開始攻微積分。“數學給了我巨大成就感和正反饋...提前學就是在投資未來,與其刷題,不如學更多對未來有用的東西,收益會更高。”初中在福建私立校就讀,因為學校有程式設計興趣班,加上父母支援,他便抱著玩的態度學了程式設計。沒專業程式設計裝置,他就用普通iPad敲程式碼,活脫脫一個程式設計苦行僧。(圖源|YouTube)高中因升學壓力,他正式進入競賽體系。起初,他同時沖數學和資訊學競賽,高一數學競賽小有成績。但再往上衝,資源和天賦門檻越來越高,學起來相當困難的他果斷放棄,轉攻資訊學競賽。但資訊學競賽這段經歷也一波三折。高一參加省選時,翁家翌幾乎不會做題。但高二,他就靠摸索出來的解法拿到全場最高分,進了省隊。後來在清華夏令營表現出色,翁家翌拿到高考加60分及有條件一本線錄取資格。但真正全國賽時,他嚴重失利,僅摘得福建省銅牌,省內排倒數第一。競賽失利對他心態影響很大,因為高二沒系統學文化課,他擔心高考沒把握,反覆權衡之後,他選了風險更高的路。2016年按清華降60分的協議,翁家翌進了自動化系。入讀後因自動化高年級課程不符合他的預期,2017年他轉到了電腦系。(圖源|知乎@Trinkle)本科一開始,翁家翌就按照電腦博士申請來規劃未來。大一找圖形學老師,但讀論文時發現水平不夠,外加對方向不感興趣,就不了了之了。大二報名學術新星計畫,加入清華朱軍教授的TSAIL實驗室,起初他什麼都不懂,誤打誤撞選了喜歡的強化學習領域,惡補知識後,在程式設計和AI方面才有了質的飛躍。實驗室期間,他參與了AI競賽ViZDoom項目,憑藉紮實工程和演算法能力,他所在團隊獲得多個獎項,也是賽事歷史上首個中國區冠軍。2020年疫情隔離在家的翁家翌自己重新寫了一套強化學習訓練流程,Tianshou(天授)框架誕生,開源之後迅速出圈,在GitHub上獲得幾千星標。後來,他成功加入圖靈獎得主Yoshua Bengio的實驗室,深入研究強化學習和自然語言處理,接觸到了全球頂級學術資源。申請碩博申請時,因競爭激烈,外加外語分數不高,翁家翌只拿到了美國卡耐基梅隆大學碩士Offer。他也是後來極少數以碩士應屆生直接進入OpenAI核心團隊的人。(圖源|翁家翌個人網站)播客採訪中,翁家翌多次提到,追求影響力是自己初心和動力。他喜歡且想做賣鏟子的人,創造價值,幫助他人,實現自我。這一想法是高三突然從他腦海裡蹦噠出來的:“如果人生是一場遊戲,遊戲的結算分數就是有多少人記得你的名字。”得益於人生遊戲結算的靈感,之後,他的每一步都在踐行自己的價值追求。剛進清華時翁家翌就做起了「慈善」。他把收集到的所有無版權課程作業、項目程式碼、實驗材料和筆記等全部放到了GitHub上,公開分享給了全世界,讓所有人站在同一起跑線。“我想打破資訊差,不想讓後人重蹈覆轍,不想讓大家花十幾二十小時鑽牛角尖。很多人能力強,只是不擅長收集資訊。如果我能做到資訊平權,學弟學妹們可能會在清華活得更好。”圖源unsplashOpenAI現在員工數千人,但它依然保持著小團隊的人才密度,擁有硬核的創新。翁家翌認為這背後因為資訊平權,它讓每個人都能發揮出最大潛力,而不是自掃門前雪。但他也因曾經的開放原始碼專案而遭到想要盈利者的蛋糕。有人認為他破壞了傳統規則,遭到不少網路惡評。但無數同學靠它完成了任務,節省了大量時間,對他而言這就是最好的回報。“去清華隨便抓個電腦系的學生問,你認識捐樓的人嗎?他們大機率不認識。但你問認識翁家翌嗎?他應該認識。因為大家都看過我的作業。”這是翁家翌在播客中的原話。圖源unsplash2019年2月,大三的翁家翌還心血來潮買了阿里雲伺服器,註冊了tuixue.com的域名。命運的齒輪就在那一刻慢慢啟動了。他起初只是做一些愚人節惡作劇、放課程答案、資料庫作業、演算法模擬器等網頁。誰知道2020年三月,因為疫情美國突然傳出暫停簽證的消息,全球留學生一片恐慌。當時翁家翌在網上刷到某中介整理的5個城市未來三天美簽預約情況,他覺得這個資訊很實用,等待簽證的留學生肯定迫切需要。於是他利用自己的爬蟲技術,做了個即時監控美簽預約名額的網站,高峰期時該網站每日訪問量破百萬,服務了數千萬人,成了留學生的救命稻草。圖源unsplash業餘時間他還搞過許多網路安全的東西,甚至修了不少校園網的漏洞。強化學習框架開源Tianshou(天授)也是放大他影響力的典型案例,這個由他主導的項目,降低了強化學習研究的門檻,讓新人快速上手實驗。再到如今OpenAI貢獻列表裡,翁家翌的名字頻繁出現,比如ChatGPT原始團隊第六作者、GPT-4o的RLInfra主要作者等。這意味著大家都在用他底層架構的鏟子,這遠比單一的演算法研究起到的作用更明顯。所有技術發展到終局都將是普及,翁家翌認為:“做技術是為了讓自己能影響到更多的人,做更有意義的事情,技術只是手段,不是目的。”(圖|翁家翌簡歷部分)從國內頂級學府到海外頂級大廠,往往是天才敘事的經典範本。但最為可貴的是,在翁家翌的自我描述裡,這一切靠的不是天賦。他認為,除了找到了喜歡且擅長做的領域,最重要的是清楚自己的目標,並建立了一套獨屬於自己的評價體系。翁家翌有著超乎同齡人的哲學深度,他說:“人生可算作是種體驗,既然你已經來到這個世界上了,那就不要浪費這段旅程。如果你不喜歡被外部評價推著走,那就建立自己的標準。”圖源unsplash在全省狀元聚集的清華,周圍人幾乎都在為GPA、競賽、科研、論文拚搏。「博士強過碩士、學歷越高越好」的固有認知也在校園蔓延開來,無數人為直博耗盡心血。初置身其中,翁家翌不可避免承受了巨大壓力,他坦言花了好長時間才從這個框架裡跳出來。方法簡單卻殘酷,那就是先把該做的事用最低限度的時間達到標準,而後把全部注意力投入到自己長期想做、真正重要的方向。受導師影響,本科期間他把電腦系的成功指標總結為,論文+比賽+GitHub三位數以上的Star,後來又進一步演化為做對現實世界人有沒有幫助、有沒有作用的東西。這套自己的評價體系後來也得到了OpenAI聯合創始人John Schulman的讚許,在面試時特意提到他的GitHub很乾淨、工程質量很好。(圖源|知乎)讀研期間,他敏銳捕捉到AI行業的風向,相比學術能力,工程的價值越來越大,於是便把自己的重點放在了工程能力的培養上,為進入工業界打好基礎。他在播客中尖銳地指出,如果想進工業界,讀博就是浪費生命,因為工業界看重的是你能否規模化,解決現實複雜問題,而非發論文。“教一個研究員(researcher)如何做好工程(engineering),遠比教一個工程師如何做好研究要難。”在他看來,現在這個時代不缺創新和好的想法,真正稀缺的是能在單位時間內驗證更多正確有效的想法,成功率和迭代次數成正比。圖源unsplashCMU碩士畢業後,他海投18家公司,順利拿到了Google、OctoML、幻方浩方(後來的DeepSeek)、OpenAI、輝達等Offer。因為對頂級研究方法的追求以及想在成熟工業級研究體系中訓練,他選了OpenAI,放棄了DeepSeek。(圖源|Github)去年科技領域的諮詢顧問Ram Srinivasan判斷稱,AI軍備競賽的人才之爭已進入2.0階段。1.0階段是圍繞那一小撮最聰明的人的戰爭,企業靠天價薪酬招收高度學術化的頂級研究者。而2.0超越了單純燒錢留人的階段,高薪只是入門票。真正拉開差距的是基礎設施、機會和願景。從這個角度看,翁家翌的選擇恰好踩中了這場轉變的節點,堅守初心,利用模型和工程工具快速迭代落地,將技術的價值帶入千萬家。(圖源|Ram Srinivasan)不管是翁家翌走過的路,還是人才之爭進入2.0階段的判斷,這都預示著傳統精英教育的劇本正在一步步失效。卷名校學歷、刷高GPA、競賽和論文等也很重要,但絕大多數人捲到極致也到不了頂端,只落得個分母的下場,跟他人之間沒有差異。在這樣的大背景下,未來的教育最重要的或許是,鼓勵孩子去定義自己的成功,不能被別人家孩子牽著走。這是一個個性越發凸顯的時代,成功樣本也會層出不窮,每個孩子都有機會去找到的閃光點。也正是如此,不能因害怕孩子失敗或是偏離主流賽道,亦或者走得太慢、走了彎路而放棄追求自己的路。圖源unsplash那又該如何找到孩子的成功之路呢?答案往往藏在那些日常生活中。比如孩子對那門學科感興趣、平時喜歡談論什麼話題、每天會把時間花在那裡...這些長期穩定的關注點都是打開成功的一把鑰匙。但這一切都有個更為根本的大前提,那就是讓孩子找到「為什麼要做這件事」的內驅力。今天的孩子常被形容為空心一代,究其根本是他們太早為分數、排名和名校奔命,從未真正有時間思考自己為什麼出發?一旦這個外在的評價標準消失了,他們的內心就會迅速坍塌。當孩子知道自己在為何而努力,即便沒有掌聲和鮮花,即便身邊牛人一堆,Ta依然不受干擾,能保持自我,持續向前。 (INSIGHT視界)
《中工雲宇宙AI園區75億銷售案查無重訊 小股東要求調查》中華工程(股票代號2515)指標建案「中工雲宇宙AI園區」一筆高達75億元的不動產交易,近日因資訊揭露前後落差,引發市場關注。中工3年前公告與買方簽署預購意向書,近期又對媒體表示專案已銷售兩成、金額達75億元,但公開資訊觀測站卻查無後續重大訊息,實價登錄金額也查無相關資料,形成市場質疑的羅生門。中工股東黃文泰今天(2日)向金管會證期局和台灣證券交易所檢舉,請公權力介入調查,維護股東權益與資訊充分且即時揭露的秩序。中華工程主力打造的中工雲宇宙AI園區,位於新北市土城工業區,總樓地板面積約1萬6000坪,主打AI與智慧綠建築永續概念,預計今年第2季取得使用執照,開始銷售入帳,可望大幅挹注營收,成為中工營運成長的重要動能。依公開資訊觀測站資料,中工於民國112年10月12日公告,與鴻海集團子公司鴻運科簽署「中工雲宇宙AI園區」房屋及車位預購意向書,交易金額為75億元;同日,鴻運科方面亦發布對等公告。該筆交易金額龐大,對雙方資本支出與資產布局均具重要性,也被列入中工年報重要契約項下。但黃文泰指出,自雙方公告簽署意向書至今,市場未查得後續已完成正式不動產買賣契約、完成交割,或列為固定資產的重大訊息公告;這筆交易是否已實質成立、是否仍停留在意向階段,股東十分關注,資訊應該充分且即時揭露。上個月27日媒體報導引述中工說法指出,土城雲宇宙AI園區「對預計銷售部分,已銷售20%,金額達75億元」,並稱將在取得使用執照後陸續交屋入帳。由於說法具體,外界解讀為交易已有明確進展,但該項訊息並未同步以重大訊息方式公告,引發投資人對資訊揭露一致性的質疑。黃文泰質疑,如果這筆交易尚未完成正式契約簽署,預購意向書是否可直接對外表述為「已銷售」或「已完成交易」,恐造成一般投資人對交易完成度的誤判;但若交易確已達成具拘束力契約,依法應辦理重大訊息揭露,卻又看不到相關的重訊公告。另一方面,比對內政部實價登錄資料,目前僅查得該園區近期數筆預售交易,合計金額約2億元左右,與75億元規模存在顯著差距,與媒體所稱銷售金額並不相符,也讓外界更加關注整體交易結構與進度。更令人驚訝的是,媒體刊出銷售進展的同日,中工股票出現鉅額成交量,時間點的重疊引發投資人討論。基於上述資訊落差與認定爭議,中工股東黃文泰今天具名向金管會證期局和證交所檢舉,要求針對這筆交易的實際進度、銷售認定基準,以及重大訊息揭露是否完備進行查核,並呼籲主管機關督促公司透過公開資訊觀測站作出一致且具體說明。
薩姆·奧特曼談AI的未來:AI 將顛覆“工程師”定義;人類注意力成稀缺資源;AI 成本將降 100 倍……
Sam Altman在 OpenAI 的 Town Hall 會議上與AI建構者們進行對話,他主要談了以下觀點:Sam Altman 認為,AI 正在重新定義“工程師”與“創造者”的角色。未來的軟體開發門檻極低,人類不再主要手寫程式碼,而是通過指令與 AI 協同完成複雜建構。AI 會讓人人都能開發、擁有個性化的軟體,但真正的瓶頸將轉向“如何讓人關心”——在注意力稀缺時代,創意與市場執行力仍是核心競爭力。他強調,多智能體(agent)與工具生態將百花齊放,不會形成單一壟斷。最大機會是在人機互動層——讓更多人真正高效使用模型。AI 的通用性與專業性會不斷融合,未來的模型既能推理又能寫作溝通。Altman 預測,AI 是強通縮力量,將極大降低創造成本並改變經濟結構,同時帶來巨大的個人賦能與潛在不平等風險。政策應防止權力過度集中。科學研究將進入“人機共研”階段,AI 扮演“無限博士後”,而人類提供直覺與判斷。在安全上,他主張從“限制訪問”轉向“提升韌性”,尤其關注生物安全領域。教育與創意領域中,人類仍以情感與洞察為核心,AI 是思維與合作的放大器。未來關鍵技能不再是程式設計,而是主動性、創造力、判斷力與合作。總體而言,Altman 描繪的是一個“人人可借 AI 實現想法”的時代——技術普及,但人性與社會設計將決定其真正價值。訪談完整實錄如下:Sam Altman: 非常感謝大家前來。當我們著手構思下一代開發者工具,以及如何駕馭即將問世的強大模型時,我們渴望聽取大家的想法與顧慮,並回答各位的疑問。希望今天的交流能讓我們更清晰地知道該為大家建構什麼,以及如何讓這些強大的模型真正發揮效用。我想先從 Twitter 上的一個問題開始。關於軟體工程領域的傑文斯悖論(Jevons paradox),你們持何立場?如果人工智慧大幅降低了程式碼生成的門檻和成本,這會減少對軟體工程師的需求嗎?還是說,更廉價的定製軟體會極大地刺激需求,讓工程師在未來幾十年仍有飯吃?我認為“工程師”的定義將發生巨變。 未來的價值創造,將更多地源於指揮電腦完成自己的工作、替他人完成工作,以及構想如何為他人創造有價值的體驗。工作的形態——無論是在編寫程式碼、偵錯,還是其他任務上花費的時間——都將徹底改變。工程領域經歷過多次類似的演變,每一次——至少到目前為止——結果都是更多人得以參與其中,發揮作用,世界也因此變得更加“軟體化”。對軟體的需求似乎從未放緩。我的預測是,未來我們許多人將使用專為個人或極少數人編寫的軟體,並且我們將持續定製屬於自己的軟體。因此,我認為我們將見證更多人指揮電腦去實現他們的想法,這與我們今天的工作方式截然不同。如果你們把這也算作軟體工程,那麼我們將會看到這種實踐的大爆發。我相信,全球 GDP 中將有更大比例通過這種方式創造和消費。現場提問者: 首先感謝給我們提問的機會。作為消費者,我是 ChatGPT 的重度使用者。我在 Reddit 上看到大家用 Codex、Lovable 或 Cursor 建構各種東西。但現在的瓶頸似乎變成了“推向市場”(Go-To-Market, GTM),對吧?我可以把東西造出來,但如何找到願意為此買單或受益的人?這才是瓶頸。我想聽聽您的看法。Sam Altman: 在我之前於 Y Combinator 工作時,創業者們常說:“我原以為最難的是建構產品,結果發現最難的是讓別人關心、使用或喜愛它,或者是建立人與產品的連接。”這一點從未改變,只不過現在建構產品變得如此容易,才讓這種反差更加明顯。對此我沒有簡單的答案。建立成功的企業、尋找差異化價值、搞定市場推廣,這些始終是難題。舊的商業法則依然適用。 AI 降低了軟體開發的門檻,但這並不意味著其他環節也會隨之變得簡單。當然,就像 AI 改變了軟體工程一樣,人們也開始利用它實現銷售和行銷的自動化,並取得了一定成效。但這註定是艱難的,因為即便在一個物質極大豐富的世界裡,人類的注意力依然是極度有限的資源。你永遠在與其他試圖建立市場管道、爭奪分銷網路的人競爭,而每一個潛在客戶都忙得不可開交。我可以構想一個未來:當一切都極大豐富時,人類的注意力將成為僅存的稀缺商品。所以,這依然會很艱難,你必須有極具創意的想法,打磨出偉大的產品。George: 謝謝 Sam,我是 George,一名獨立開發者。我正在基於 Codex SDK 開發,試圖建構一種協調多個智能體(Agents)的方法。我有關於你們的“智能體建構工具”及其產品願景的問題。目前它主要是工作流和鏈式提示詞。我想知道,作為一個基於此開發的開發者,我的處境安全嗎?你們認為未來會有各種不同的多智能體協調 UI 共存的空間嗎?還是說 OpenAI 會壟斷這一領域?Sam Altman: 不,我們並不認為自己掌握了最佳介面的終極答案,也不確定人們最終會如何使用它。我們確實看到有人建構了令人驚嘆的多智能體架構,也有人做出了極佳的單一互動式線程。我們無法獨自解決所有問題,而且並非所有人的需求都一致。這就好比老電影裡的場景,有人喜歡坐在 30 個螢幕前,監控著瘋狂的系統,進行各種操作;也有人只想要一種非常平靜的語音模式,每小時只跟電腦說一句話。電腦在後台處理大量事務,不需要持續監督,他們只需深思熟慮後下達指令。就像許多事物一樣,人們需要嘗試不同的方法來找到自己的偏好。世界可能會收斂於幾種主流模式,但我們無法預知一切。我認為,建構工具來幫助人們高效利用這些極其強大的模型,是一個極好的方向。這正是目前所缺失的。模型的能力與大多數人理解並利用這些能力之間,存在著巨大且不斷增長的鴻溝。 肯定會有人建構出真正填補這一鴻溝的工具,但目前還沒人完全做到。我們也會嘗試推出自己的版本,但這個領域空間廣闊,且使用者偏好各異。如果你們有任何希望我們建構的功能,請告訴我們,我們會嘗試。Valerie Chapman: 你好 Sam,我是 Valerie Chapman,我正在 OpenAI 平台上開發 Ruth。我很想聽聽你的看法:目前女性因薪酬差距遭受了巨大的經濟損失。你認為人工智慧如何解決這幾十年來存在的經濟不平等問題?Sam Altman:這有個好消息——當然情況也很複雜——但在我看來,主要的利多在於:人工智慧將帶來強大的通貨緊縮效應。我對此做過反覆推演,雖然你可以想像一些極端情況,比如全世界的資金都湧向自我複製的資料中心等,但總體而言,特別是考慮到腦力勞動的進步,以及機器人技術等領域即將到來的突破,我們將面臨巨大的通貨緊縮壓力。我之所以說“絕大多數是好消息”,是因為雖然仍有一些複雜的問題待解,但事物的成本將大幅降低。除了那些受限於社會或政府政策阻礙的領域(比如在舊金山建造更多住房),我預計這種變化將相當強勁且迅速。無論社會結構是否天然向個人傾斜,個人賦權(Personal Empowerment) 看起來都將日益增強。我至今仍覺得很難完全消化這一變革的深遠意義。我敢斷言,到今年年底,僅需幾百或一千美元的推理算力成本,你就能完成以前需要一個團隊耗時一年才能建構的軟體。 這真的很難——至少對我來說——很難完全理解這種經濟變革的規模。這應當是一件極具賦權意義的事情。海量的資訊觸手可及,創造新事物、新公司以及發現新科學的成本急劇下降。我認為這應該成為推動社會公平的力量,讓那些未曾獲得公平對待的人擁有真正的機遇。當然,前提是我們不能在政策上搞砸,因為風險確實存在。我擔心在一個想像中的世界裡,人工智慧會導致權力和財富的過度集中。因此,避免這種情況發生,必須成為政策的主要目標之一。Ben Hilak: 大家好,我是 Raindrop 公司的 CTO Ben Hilak。我想請教一下,在展望未來時,您如何看待模型“專業化”與“通用化”之間的平衡?比如 GPT-4.5,我認為它是第一個真正擅長寫作的模型。我至今記得看到它的輸出時感嘆:“寫得真棒”。最近在 Twitter 和 X 上有很多關於 GPT-5 寫作能力以及 ChatGPT 變得有些難以駕馭、晦澀難懂的討論。當然,GPT-5 是一個更好的代理模型,在工具使用、中間推理等方面都表現出色。感覺現在的模型有點“偏科”(Spiky),甚至更極端了——在程式設計等領域非常突出,而在寫作等領域則稍遜一籌。我想知道 OpenAI 是如何看待這一特徵的?Sam Altman: 我們在這方面確實做得不夠好。我們希望未來的 GPT-5 系列版本在寫作上能比 4.5 更出色。我們確實決定——並且我認為理由充分——將 5.2 版本的大部分精力投入到提升智能、推理、程式設計和工程能力上。我們的精力畢竟有限,有時難免顧此失彼。但我相信未來將主要是非常優秀的通用模型。即使你想開發一個專精程式設計的模型,如果它也能寫得一手好文案,那就更完美了。比如,當你讓它生成一個完整的應用程式時,你會希望其中包含優質的文字;當它與你互動時,你會希望它擁有周到、敏銳的個性並能清晰溝通。我所說的“寫得好”是指思路清晰,而非單純的辭藻華麗。所以我希望未來的模型能在所有這些方面都變得非常出色。我相信我們能做到。智能具有相當的靈活性,我們可以讓單個模型兼顧各方。現在確實是推動“編碼智能”的關鍵時刻,但我們也會努力在其他方面迅速補齊短板。稍後我會回答幾個來自 Twitter 的問題,請繼續。現場提問者2: 我是 Unify 公司的 CTO。您剛才提到我們正在做市場推廣自動化。我們一直在思考並投入精力的是“永遠線上的 AI”,也就是您之前提到的“智能將便宜到可以隨意使用”。對我們而言,為客戶運行數百萬甚至上億個代理(Agents)的最大瓶頸是成本。您如何看待小模型的發展、成本問題,以及未來幾年開發者將迎來的顯著成本降低?Sam Altman: 我認為我們可以在 2027 年底之前提供類似 GPT-5 水平的高級智能……有人想猜猜成本嗎?我猜至少會便宜 100 倍。但還有一個我們過去沒太考慮的維度。現在隨著模型輸出變得越來越複雜,人們對交付速度(Latency)的要求甚至超過了成本。我們在降低成本曲線上一直做得很好——你可以看看從最初的 o1 preview 到現在的進步。但我們之前沒有過多考慮如何在保持同樣輸出質量的前提下大幅提升速度,這可能導致成本上升。對於你提到的許多應用場景,人們會非常需要高速度。我們必須弄清楚如何在這兩者之間取得平衡,不幸的是,這是兩個截然不同的難題。假設我們只關注成本,假設這是你和市場想要的,那我們可以將成本降得非常低。也就是回答幾個關於介面的問題:當前的介面並非為代理而設計。關於定製化代理介面的創新如何加速微應用趨勢?我在自己最近使用 Codex 的過程中注意到了這一點。我不再將軟體視為靜態的事物。 如果我有一個小問題,我希望電腦能立即編寫程式碼來解決它。這種趨勢將進一步發展。我預感,我們要徹底改變使用電腦和作業系統的方式。我不認為每次需要編輯文件時,都會當場編寫一個新版本的文書處理器,因為我們習慣了固定的介面,按鈕的位置也很重要。但對於很多其他事情,我們會期望軟體是為我們“量身定製”的。也許我每次都用同一個文書處理器,但我有一些獨特的使用習慣,我希望軟體能越來越適應我——即核心軟體是靜態或緩慢演進的,但體驗是高度定製的。我的用法和你的不同。這種工具不斷演變並僅為我們個人收斂的趨勢,似乎即將發生。當然,在 OpenAI 內部,大家已經將 Codex 融入工作流程,每個人都有自己的定製小功能,使用方式大相逕庭。這一點似乎是肯定的。關於“建構者應該如何考慮持久性”以及“初創公司的功能是否會被模型更新取代”的問題,也就是你問的“OpenAI 承諾不會吞噬那一層堆疊”?認為商業的“物理定律”已經完全改變是很誘人的,但實際上並沒有。或許它們會隨時間改變,但目前唯一改變的是:你可以更快地完成工作,更快地建立新軟體。但是,建構成功初創公司的所有其他規則——獲客、市場切入、使用者粘性、護城河、網路效應、競爭優勢——這些統統沒有變。這對我們也一樣。有很多初創公司做了我們在完美世界裡本該早點做的事,但現在已經太晚了,因為他們已經建立了真正的持久優勢。這種情況將繼續發生。我總是給人們一個通用的思考框架:如果 GPT-6 是一次驚人的重大升級,你的公司會因此高興還是難過? 我鼓勵大家建構那些隨著模型變強而受益的產品。有很多東西可以這樣建構。反之,那些僅僅依靠修補模型缺陷(而模型升級後缺陷消失)的生意,雖然如果積累了足夠優勢也能存活,但這是一條更艱難、壓力更大的道路。最後一個問題,關於代理(Agent)。代理能夠自主運行長時間工作流程而無需持續人工干預的現即時間表是多久?考慮到即使簡單的鏈上任務通常在五到十步後就會中斷。OpenAI 有人想回答嗎?現場提問者3: 我覺得這很大程度上取決於任務類型。在 OpenAI 內部,我們看到人們以一種非常特殊的方式使用程式碼提示(Code Prompting)。也許他們在使用 SDK,就像一個自訂框架,不斷提示它繼續運行。所以,這主要不是“何時”的問題,而是“視野拓展”的問題。如果你有一個非常具體的、你非常瞭解的任務,不妨今天就去嘗試。如果你一開始就想“我要提示模型去建立一家公司”,那是一個過於開放的問題,驗證循環會非常困難。所以我建議你思考:如何將其分解成不同的子問題,讓代理可以自我驗證,最後由我來驗證最終輸出?隨著時間推移,我們可以讓代理處理越來越廣泛的任務。Sam Altman: 還有其他問題嗎?Sam: 嗨,Sam。我想回到關於人類注意力和 GTM(市場推廣)的問題上。我一直認為,從消費者角度看,人類的注意力是限制因素;而對於建構者來說,限制因素是想法的質量。我想問的是:我花了很多時間幫助 AI 公司制定 GTM 策略,但很多時候,他們的產品實際上並不值得人們關注。那麼,人們如何才能提出好想法?你們可以建構什麼樣的工具來提高人們想法的質量?Sam Altman: 很多人喜歡將 AI 的輸出稱為“垃圾內容”(Slop),但世界上也有很多人類製造的“垃圾內容”。提出好的新想法非常困難,我越來越相信,我們思考的邊界受到工具的限制。我認為我們需要建構幫助人們產生好想法的工具。隨著創作成本的持續暴跌,我們將能夠建立非常緊密的反饋循環,從而更快地篩選出好想法。隨著 AI 能夠發現新的科學知識並編寫複雜的程式碼庫,我相信全新的可能性空間將會打開。很多人都有過這種體驗:坐在 AI 面前(比如一個程式碼生成器),卻不知道下一步該問什麼。如果我們能建構工具,分析你過去所有的工作和程式碼,找出對你可能有用或有趣的東西,並不斷提出建議,這將非常有幫助。這就好比提供一個極佳的“頭腦風暴夥伴”。我生命中有三四個人,每次見完他們,我都會帶走很多新想法。像 Paul Graham 在這方面簡直是頂級的。如果我們能建構一個“Paul Graham 機器人”,你可以與之互動來激發新想法——即使其中大部分都很糟糕,即使你對 100 個想法中的 95 個都說“絕對不行”——我認為這也將對世界上誕生的優秀事物數量做出重大貢獻。模型似乎有能力做到這一點。在使用內部的 5.2 版本時,我們第一次聽到科學家們說,這些模型帶來的科學進展不再是微不足道的。我簡直無法相信,一個能夠提出新科學見解的模型,會無法通過不同的框架和訓練,提出關於產品建構的新見解。Theo: 嗨,我是 Theo,一名開發者 YouTuber 兼 YC 創始人,我也非常想要那個 Paul Graham 機器人。我想問一個偏技術的問題。我真的很喜歡像我們使用的建構塊這樣的技術不斷演進。我經歷過 Web 開發的幾次重大變革,比如遷移到 TypeScript 和 Tailwind 等等。我擔心的是,隨著建構工具越來越好,我們可能會被困在現有的工作方式中。就像美國的電網,一旦建成便難以翻新,導致情況惡化。你是否看到了這種潛在風險?我們是否正在用現有技術建構未來的“地基”,導致未來難以更換?因為即使是讓當前模型使用兩年前的技術去更新程式碼,有時也像“拔牙”一樣痛苦。你認為我們未來能引導模型足夠快地使用新事物嗎?還是說我們已經無法改進現有的技術基建了?Sam Altman: 我認為我們將非常擅長讓模型使用新事物。歸根結底,如果我們正確使用這些模型,它們就是一個通用推理引擎。目前的架構雖然也內建了大量的世界知識,但我們正朝著正確的方向前進。我希望在未來幾年內,模型更新知識、使用新事物以及學習新技能的速度能夠大幅提升,甚至比人類更快。一個值得我們引以為豪的里程碑是:當模型面對全新的事物、環境、工具或技術時,你只需要解釋一次——甚至無需解釋,模型就能自行探索,隨後便能可靠且正確地加以利用。這一天似乎已不再遙遠。現場提問者4: 抱歉,我有一個問題。作為一名較為年長的科學家,我知道做一個科研項目往往會衍生出多個新想法。想法是呈指數級增長的,但科學家用於執行研究的時間卻是線性遞減的(或者說有限的)。 這些工具正在加速這一過程,這太不可思議了。但是我們都很貪婪,想要更多。除了幫助我們在更短時間內追求這些有趣的想法,是否存在一個過渡點,即模型將徹底接管整個科學研究事業?如果會,這通過現有演算法就能實現,還是需要新的想法或世界模型?Sam Altman: 我認為,在大多數領域,距離模型能夠進行真正完全閉環的自主研究,還有相當長的一段路要走。以數學為例,它不需要“濕實驗室”(生物/化學實驗室)或物理輸入。也許只要通過極其深入的思考和不斷更新模型,就能取得巨大進展。但即便如此,目前利用模型取得最大突破的數學家們依然高度參與其中,觀察中間過程並指出“這感覺不對”。直覺告訴我,這是一條人機協作的獨特路徑。我遇到過幾位整天與最新模型協作的數學家。他們進展神速,但所做的工作與模型截然不同。這讓我聯想到國際象棋史上“深藍”(Deep Blue)擊敗卡斯帕羅夫(Kasparov)後的那個時期。曾有一段時間,AI 比人類強,但“人類+AI”(人類挑選 AI 的最佳步法)比單獨的 AI 更強。隨後很快,AI 變得過於強大,人類的介入反而成了累贅。我懷疑許多研究領域也會經歷類似過程。隨著時間推移,事物將變得極其複雜,AI 理解多步邏輯的能力將超越大多數人,甚至所有人。但是,這就涉及到了創造力、直覺和判斷力的問題,這些是我們目前這一代模型還遠未企及的。雖然我找不到原則性的理由說我們永遠無法達到那一點,所以我假設最終會達到。但今天,僅僅說“嘿,GPT-5,GPT-6,去解決數學問題”,肯定不如幾個優秀的專家利用它探索方向來得有效。即使我們可以驗證結果並將其反饋回訓練集,過程中仍有其他因素在起作用。不過,你確實觸及了一個痛點:解決一個問題往往會產生更多新問題。與那些積極使用 AI 的科學家交流非常令人興奮,他們確實燒了很多 GPU,但他們掌握了一項新技能:“這裡有20個新問題,我要對它們進行廣度優先搜尋。我不會深入研究每一個,而是把 AI 當作‘無限的學生助理’。”我最近把這個稱呼升級為“無限的博士後助理”。在物理科學方面,我們常討論是該為每個領域建立自動化濕實驗室,還是依靠全球科學家構思實驗、利用現有裝置並樂意貢獻資料。從科學界擁抱這些工具的熱情來看,分佈式的方式似乎是可行的。這顯然會建構一個更簡單、更美好、更分佈式、匯聚更多聰明才智和多樣化裝置的世界。Emmy: 你好 Sam,我是 Emmy。我是史丹佛大學的學生,經營一家生物安全初創公司。關於科學實驗、雲實驗室及其發展方向,我的團隊花了很多時間思考如何防止 AI 驅動的生物設計帶來危害,同時利用 AI 提升安全基礎設施。我想問的是,在 2026 年的路線圖中,安全處於什麼位置?您是如何思考這些問題的?Sam Altman: 你是指廣泛的安全,還是特指生物安全?Emmy: 都可以,但更傾向於生物安全。Sam Altman: 到 2026 年,AI 會帶來許多潛在風險,其中生物領域的風險讓我們非常擔憂。模型在生物學方面表現得相當出色。目前,全球的戰略主要是限制存取權,並設定各種分類器來阻止人們製造新型病原體。但我認為這種做法不會長久。我認為世界需要為 AI 安全——特別是生物安全——做出轉變:從“阻擋”轉向“韌性”(Resilience)。 我的聯合創始人 Wojciech 用了一個我很喜歡的關於消防安全的類比。火為社會帶來了美好,但也曾燒燬城市。我們曾試圖限制火的使用(比如“宵禁”一詞 cur-few 本意就是 cover fire,掩蓋火源),但這並不是長久之計。後來我們對火災有了更好的“韌性”意識,發明了消防法規、阻燃材料等。現在,社會在這方面做得很好。我認為我們需要以同樣的方式思考 AI。AI 將對生物恐怖主義和網路安全構成重大威脅,但 AI 也是解決這些問題的關鍵。我們需要全社會共同努力,建設這種具有韌性的基礎設施,而不是單純依賴實驗室去“攔截”它們該攔截的東西。未來世界上會有很多強大的模型。我們與許多生物研究人員和公司交流過,探討處理新型病原體所需的條件。很多人報告說 AI 在這方面非常有幫助,但這不會是一個純粹的技術解決方案,世界需要轉換思維方式。我非常擔心現狀,除了“韌性”方案外,我看不到其他出路,而 AI 確實能幫助我們快速實現這一點。如果今年 AI 領域出現某種明顯的重大危機,我認為很可能源於生物領域。到了明年及以後,可能還會出現其他糟糕的情況。Meghna: 你好,我是 Meghna。我的問題關於人類協作。AI 模型非常擅長獨自學習,這讓我反思:如果我能隨時隨地獲得答案,為什麼還要花精力去問另一個人?這涉及到了“人類+AI”的高效產出,但我更想問的是“人類+人類+AI”的協作模式。希望我表達清楚了。Sam Altman: 完全理解。提到教育,雖然我比你們年長,但我上中學時 Google 剛出現。當時老師們試圖讓學生承諾不使用它,理由是“如果你能隨時隨地查到資訊,為什麼還要上歷史課?為什麼還要死記硬背?”這簡直是瘋了。我認為,擁有工具只會讓我更聰明、學得更多、做得更多。禁止使用 AI 就像幾十年前因為有了計算器還要強迫人學算盤或計算尺一樣——這不是一項有價值的技能。我對 AI 工具也持同樣看法。按照目前的教學方式,AI 確實是個挑戰。但這表明我們需要改變教學方式,而不是拒絕 AI。你仍然需要學會思考,而寫作是練習思考的重要方式。但我們如何教授思考以及如何評估思考能力,必須隨之改變,我們不應迴避這一點。所以我認為這會沒事的。那些極具自學能力的人已經做得非常出色了,我們會找到新的教學方法帶動其他學生。關於你提到的協作,即如何讓這件事不僅僅是個人的單打獨鬥?我們正在努力衡量這一點。我懷疑在 AI 普及的世界裡,人際聯絡將變得更加有價值,而非貶值。人們會更加重視與他人的相處和合作。 我們已經開始看到人們探索更便捷的協作介面。在思考製造硬體裝置時,我們首先考慮的就是協作式的“多人+AI”體驗。雖然還沒有人完全掌握,但你會驚訝於 AI 在這方面的潛力。AI 帶來了前所未有的賦能。想像一下,五個人圍坐在一張桌子旁,旁邊有一個 AI 助手(可能是個小機器人),你們作為一個團隊將更具生產力。這將成為常態。每次小組頭腦風暴都會有 AI 參與,幫助團隊做得更好。最後提醒一下,如果你們有什麼需求並告訴我們,我們很可能會去實現它。現場提問者5: 謝謝。我很好奇,隨著代理(Agent)越來越多地投入生產系統,尤其是在大規模部署下,您認為最被低估的故障模式是什麼?是安全、成本還是可靠性?另外,目前那些方面的工作投入不足?Sam Altman: 你提到的問題都很重要。有一件事讓我個人感到驚訝,我相信也讓許多人感到驚訝:當我第一次開始使用 Codex 時,我曾確信絕不會給它完全無監督的電腦存取權。但我只堅持了大約兩個小時。然後我就想,這看起來很合理,代理似乎在做正確的事,我討厭每次都要批准命令。於是我決定開啟一會兒看看——結果從此我就再也沒關過,一直給它完全存取權。我認為其他人也有類似的經歷。所以我的普遍擔憂是,這些工具既強大又便利,但一旦發生故障,後果可能是災難性的。雖然故障率很低,但我擔心我們會因此麻痺大意,抱著“船到橋頭自然直”的心態,逐漸滑向一種聽之任之的境地。隨著模型能力日益增強,我們越來越難以完全理解它們的行為。如果模型出現偏差,或者在長期使用中暴露出隱蔽的複雜問題,你可能會在不知不覺中引入安全漏洞。對於AI失控這種科幻場景,大家看法不一。但我認為,採用這些工具的誘惑——不僅是壓力,更有其帶來的樂趣和力量——將是巨大的。人們會被裹挾其中,甚至來不及充分考慮運行這些工具的複雜性,或是沙箱機制的可靠性。我擔心的是,隨著能力的急劇提升,我們會習慣並盲目信任模型的現有表現。如果我們沒有建立起完善的——我稱之為“宏觀安全基礎設施”——我們將不知不覺地陷入困局。這也是我認為目前極佳的創業機會。Claire: 你好,我是克萊爾,伯克利分校大二學生,主修認知科學和設計。我想聊回教育的話題。讀高中時,我就看到同學用 ChatGPT 寫論文和作業。現在到了大學,我們也在探討跨學科的 AI 政策和課程。我想回到關於 K-12 階段的討論,當孩子們正處於學習解決問題、寫作和思考的關鍵成長期,如果課堂上引入 AI 會是什麼樣?作為一位新晉父親,你如何預測 AI 將如何改變和塑造這些關鍵階段的教育?Sam Altman: 總的來說,我不建議在幼兒園階段使用電腦。孩子應該在戶外奔跑,玩實體玩具,學習人際互動。所以,我不讚成在幼兒園大量使用 AI,甚至不讚成使用電腦。從發展角度看,我們要警惕技術對低齡兒童的影響。關於社交媒體對青少年的負面影響已有諸多討論,但我預感,很多技術對更年幼孩子的影響可能更為嚴重,卻鮮有人關注。在對此有更深入理解之前,我認為幼兒園的孩子不需要大量接觸 AI。Alan: 你好,我是艾倫,在生物製藥行業工作。生成式 AI 在臨床試驗、文件撰寫和加速審批方面表現驚人。我們正嘗試用它進行藥物設計,特別是化合物設計。但我們遇到了一個難題:三維空間推理。我想知道這是否會有一個臨界點,或者您怎麼看未來的發展?Sam Altman: 我們會解決這個問題的。雖然我不確定具體時間,但這確實是一個非常普遍的需求,我們也知道技術路徑。目前還有許多緊迫領域需要推進,但這一天終會到來。Dan: Sam 你好,我是 Dan。我剛從倫敦一所大學輟學,加入了 Y Combinator 的 W26 批次。我有兩個問題:第一,父母還在催我讀完大學,你認為目前的大學教育是否有時會限制個人發展?第二,你現在還做個人投資嗎?Sam Altman: 我輟學後,父母念叨了十年才放棄讓我回去讀書的念頭。父母就是這樣,他們愛你,想給你他們認為最好的建議。你需要耐心解釋:如果你想回學校,隨時都可以,但世界變了,而且還在不斷變化。每個人都要做自己的決定,而不是盲從社會灌輸給你的既定路線。我個人認為,如果你是一名 AI 開發者,現在可能不是待在大學裡的最佳時機。對於雄心勃勃、主動解決問題的人來說,這是一個千載難逢的特殊時期。記住,學校隨時可以回去讀。你應該告訴父母:這並不意味著上學對很多人來說是錯誤的,也不意味著未來這對你不是正確的選擇,但此刻,你必須抓住機遇。他們最終會理解的。至於第二個問題,我不再做個人投資了。我很懷念那段時光。但我因 OpenAI 分身乏術,而且存在利益衝突——如果我投資的公司成了 OpenAI 的大客戶,情況會變得很尷尬,不做投資反而更省心。Michael: 嘿 Sam,我是 Michael,來自 WorkOS。我們主要做身份驗證。我有個功能請求:允許使用者使用 ChatGPT 帳戶登錄第三方應用。我覺得很多人會喜歡這個。Sam Altman: 我們會做的。Michael: 終於等到了。Sam Altman: 你具體想要什麼功能?是想要使用者自帶 Token 預算,還是自帶 ChatGPT 的記憶,還是全部?Michael: 這正是我想問的。首先當然是 Token 預算。使用者應該能使用自己的帳戶權限訪問模型。但更有趣的是其他方面,比如我的公司能訪問那些 MCP 伺服器?ChatGPT 擁有我的那些記憶?它知道我正在做什麼項目嗎?這涉及很多工作和個人隱私。我很想知道你們怎麼考量這些。Sam Altman: 我們確實在研究如何實現這一點,但這同時也令人擔憂。ChatGPT 確實掌握了大量使用者隱私。即使你告訴密友很多秘密,你也確信他們懂得社交分寸,知道何時分享、與誰分享。我們的模型雖然表現不錯,但還沒完全達到那種微妙的社交判斷力。如果我把 ChatGPT 帳戶連接到很多網站,然後讓它“憑判斷隨意分享”,我會感到非常不安。不過,如果是單純的“自帶 Token 預算”,比如我在其他服務上使用我已經付費的 Pro 模型,這聽起來是個很棒的功能。我們至少會先做到這一點,同時探索如何妥善處理資訊共享。我們必須非常謹慎,不能搞砸。Oleg: 嘿 Sam,我是 Oleg。大家都同意軟體開發作為一門手藝已經發生了巨變,但我看 LinkedIn 上 OpenAI 還在招軟體工程師。我想知道,過去這段時間,你們的面試方式發生了什麼變化?Sam Altman: 我們會繼續招聘軟體工程師,但這是我們第一次——我知道其他創業公司也在思考這個問題——計畫大幅放緩人員增長速度。因為我們認為,利用 AI 可以實現“少人多效”。現在的障礙在於,大多數公司的既有政策還沒準備好接納大量的“AI 同事”。這需要時間調整。企業最不該做的就是瘋狂擴招,然後突然發現有了 AI 並不需要這麼多人,最後不得不進行痛苦的裁員。所以,對我們而言,正確的策略是放慢招聘,但保持精選。我並不認為 OpenAI 最終會變成“零員工”公司。在很長一段時間裡,我們將擁有一群能力倍增的人才,這大概就是未來經濟的形態。至於面試,目前變化不大,但我們正在討論改革。我們的目標是:讓應聘者坐下來,在 10 到 20 分鐘內,完成一項在去年可能需要一個人花兩周才能完成的任務。是的,這是重中之重。我們要考察人們能否利用新工具高效工作。傳統的軟體工程面試早已過時,現在更是離題萬里。這就引出了一個普遍問題:未來的贏家是那些“只有少量員工但擁有大量 AI 同事”的公司,還是“完全由 AI 組成、只有一排排 GPU 而沒有人類”的公司?我非常希望是前者。但如果傳統公司不積極採用 AI,不招聘善用工具的人才,它們最終會被那些完全由 AI 組成、沒有繁文縟節束縛的新型實體淘汰。這對社會來說將是極大的動盪。我們一直在思考如何表達這一觀點,這聽起來像是在推銷自己,但我真心認為:企業迅速、大規模地採用 AI 至關重要。Cole: Sam 你好,我是 Cole,一名創作者兼攝影師。過去一年,AI 徹底改變了我們講故事和表達自我的方式。在創意領域出現了許多有趣的動態,比如用 Sora 作為畫布,將自己置身於各種奇幻場景中。隨著模型不斷進化,你認為人類的創作身份與 AI 輔助創作之間的關係將走向何方?Sam Altman: 我們可以從圖像生成(Image Gen)領域尋找答案,它發展得最早。創意界對它的態度可謂愛恨交織。其中一個有趣的觀察是消費者的反應。研究顯示,如果被告知作品是人類而非 AI 創作的,人們的欣賞度和滿意度會大大提高。我認為這將是未來幾十年的重要趨勢:我們深切關注人類,卻對機器漠不關心。 在所有對 AI 的貶稱中,我最喜歡“Clanker”(原本指發著金屬撞擊聲的機器人/鐵皮人),它非常能喚起情感反應。你可以看到那些由“Clanker”生成的、令人難以置信的精美圖像,但一旦知道真相,許多人的主觀評價就會大打折扣。我在網上看過一個視訊,採訪那些聲稱痛恨 AI 藝術的人……有些人常說:“我肯定能分辨出 AI 生成的圖像,因為它們太糟糕了。” 於是,研究人員做了一個測試:給這些人看 10 張圖片,讓他們按喜愛程度排序。這其中一半完全由人類創作,另一半完全由 AI 生成。結果相當一致,人們往往會將 AI 創作的圖片排在前面。然而,一旦被告知真相,他們的態度就會立刻反轉:“其實我不喜歡它,這並不是我想要的。” 這恰恰揭示了真正的試金石:即你的情感共鳴究竟源於何處。 當我讀完一本我深愛的書,第一件事就是去查閱作者的生平,瞭解他的人生經歷以及創作動機,因為我感到與這個陌生人建立了一種精神聯結,我渴望瞭解他。同樣,如果我讀了一部偉大的小說,最後卻發現是由 AI 寫出來的,我會感到某種失落和沮喪。我認為這不僅是一種深刻的情緒,更將是一個持久的趨勢。不過,如果藝術作品中包含了人類的指導——那怕只有一點點——人們似乎就不會產生那種強烈的牴觸情緒。這種情況由來已久,就像人們依然欣賞數字藝術家使用 Photoshop 創作的作品一樣。基於目前的觀察,我的預測是:創作者本身、他們的人生故事,以及他們在創作過程中所做的編輯、策劃等工作,依然至關重要。 總體而言,我們並不想要完全由 AI 生成的藝術作品——至少從我們在圖像領域的經驗來看是這樣。Dan: 我們還有時間回答兩個問題。Keith Curry: 嗨 Sam,我是 Keith Curry,剛從舊金山州立大學畢業。我的問題關於個性化和記憶功能。首先,您認為這方面未來會如何發展?其次,關於更精細的控制權,比如對記憶進行分組——例如區分“工作身份”和“個人身份”。這樣在不同的提示場景下,您可以更精確地選擇希望 AI 呼叫的內容,您對這一點怎麼看?Sam Altman: 是的,我們將大力投入記憶和個性化功能。這顯然是使用者所需,也能顯著提升工具的可用性。我個人在這方面也經歷了一個觀念轉變的過程,但現在我已經準備好了:讓 ChatGPT 訪問我電腦和網際網路上的所有資訊,讓它變得“全知全能”。這帶來的價值將是巨大的。我不再像以前那樣對此感到顧慮。當然,我真心希望所有 AI 公司——以及整個社會——都能高度重視安全和隱私,因為 AI 的效用實在太大了。AI 將瞭解我生活的方方面面,我不會去阻礙這一點。 雖然出於多種原因,我還沒準備好佩戴那種時刻記錄一切的眼鏡,但我確實準備好說:“嘿,你可以訪問我的電腦,去弄清楚正在發生什麼,來幫助我、理解一切,並完美地呈現我的數字生活。”我很懶,我認為大多數使用者也是如此。所以,合理的呈現方式至關重要。我不想坐在這裡手動分類:這是工作記憶,那是個人記憶,那是別的什麼。我想要的是——這也確實是可能的——AI 能深刻理解我生活中複雜的規則、互動及層級關係,知道在何時使用什麼資訊,在那裡展示什麼內容。我們需要解決這個問題,因為這才是大多數使用者真正想要的。Luan: 嗨 Sam,我是 Luan,一名來自越南的國際學校學生。我的問題是:您認為在 AI 時代,人們應該掌握的最重要的技能是什麼?Sam Altman: 最重要的將是那些“軟技能”。過去那種“去學程式設計”的顯而易見的建議,現在已不再絕對適用。我認為,擁有高度的主動性(Agency)、擅長產生創意、極具韌性,以及對快速變化的世界保持極強的適應能力,這些將比任何具體的技術技能都更重要。 而且,這些都是可以習得的。作為一名風險投資人,曾讓我大感意外的是,人們可以通過一個為期三個月的訓練營式項目,在上述領域取得驚人的進步。這是我認知上的一次重大刷新。所以,我認為這些才是最重要的技能,而且它們並不難學。時間到了嗎?好的。非常感謝大家前來交流。我們非常希望能收到關於“你們希望我們建構什麼”的反饋。設想一下,未來我們將擁有一個比當前模型強大 100 倍、上下文長度增加 100 倍、速度快 100 倍、成本降低 100 倍的模型,它能完美呼叫工具,並具備極高的連貫性。我們會實現這一切。 請告訴我們你們想要什麼。我們會留在這裡,無論你需要 API、某種基礎功能、某種執行階段環境,還是其他任何東西,我們都在為你建構,並且希望能把它做好。再次感謝大家的到來。 (藍血研究)
DeepMind 掌門人預判 AGI 將於 5-10 年內降臨
最近,Google DeepMind 掌門人德米斯·哈薩比斯(Demis Hassabis)接受 CNBC 專訪。他難得敞開心扉,直言不諱地評價了全球 AI 格局,尤其是中國 AI 的追趕速度和創新現狀。“中國團隊的追趕速度極快,只落後幾個月,但在原創性上,他們還沒拿出 Transformer 級的東西。”以 DeepSeek、阿里為代表的中國 AI 團隊,在工程效率、推理最佳化、成本控制上,展現了恐怖的實力。“一篇新論文出來,他們往往能以驚人的速度復現,甚至在某些方面做得更好。”換句話說,在 “把已知路徑做到極致” 這件事上,中國團隊已經證明了自己是全球頂級玩家。也正因為如此,矽谷過去那種“領先一代”的技術安全感,正在被一點點消耗掉。不是按年,而是按月縮水。要知道,過去很長一段時間美國尤其是矽谷派的主流觀點是:中國在 AI 上還遠遠落後,大概是幾年的差距。根據史丹佛大學《2025 年人工智慧指數報告》,中國在 AI 論文發表和專利申請總量上持續領先。且像 DeepSeek、智譜等機構發佈的模型,在國際基準測試中已與第一梯隊產品表現相當。以 DeepSeek V3.2 為例,在公開的推理類基準測試中,它已經能夠全面對標 GPT-5,僅略低於 Gemini 3 Pro。然而,他也指出原創性依然是中國團隊的短板。Transformer 或 AlphaGo 那樣從零到一的技術突破,目前在中國尚未出現。換句話說,中國團隊可以“開車飛馳在既有軌道上”,但鋪設全新軌道的能力仍需時間和積累。哈薩比斯強調,這並非能力不足,而是原創性突破往往需要長期科研積累、實驗失敗和探索精神的結合。不過哈薩比斯也看到了中國 AI 獨有的潛力,他認為當工程最佳化達到一定高度,往往會催生質變。中國憑藉廣闊的應用場景、迅速的市場反應和持續投入,很可能從別出心裁的角度,斬出那一刀改變格局的創新。在談到通向 AGI 的挑戰時,哈薩比斯強調,現有大模型存在“鋸齒狀智能”(jagged intelligence)。這是指模型在某些任務上表現非常出色,但面對複雜因果鏈條、多步驟邏輯推理或現實世界常識時,能力不穩定甚至可能出錯。這說明通用智能不僅需要強大的處理能力,還要在多個維度上保持穩定和一致。除此之外,現有系統無法持續線上學習,也難以自發產生原創性想法,通向 AGI 仍需克服這些根本性限制。在這一背景下,哈薩比斯談到 Scaling Law(規模定律)及其作用。他認為,雖然模型增大、算力增加和資料擴充的回報增速有所放緩,但總體進展依然非常好,能力提升仍值得投入。然而,要真正實現 AGI,僅靠 Scaling Law 仍不夠,還需要一兩個像 Transformer 那樣的重大範式突破。哈薩比斯保持謹慎樂觀,預計 AGI 很可能在五到十年內實現,同時指出算力問題最終歸結於能源,因此未來能源將成為“智能的貨幣”。他還進一步提到“世界模型”概念,作為通向 AGI 的核心手段。與 LLM 主要處理文字不同,世界模型能夠理解因果關係和長期後果,在腦中模擬世界、驗證假設,實現規劃和預測。未來 AGI 很可能是 LLM 與世界模型的融合體。DeepMind 已在 Genie、視訊生成 Veo 和機器人模擬中佈局早期世界模型,讓 AI 在虛擬環境中練習、犯錯、成長,真正具備“理解”和“預測”能力。在應用層面,哈薩比斯看好端側 AI,即將高效、輕量的模型運行在手機、可穿戴裝置和智能眼鏡等終端上。Google計畫通過 Project Aura 智能眼鏡以及機器人領域的探索,讓 AI 不僅會“說”,還能實際“做事”,並行揮實用價值。過去兩三年,DeepMind 也回歸“創業公司狀態”,快速迭代 Gemini 模型並落地到 Google 核心產品,包括搜尋、Workspace 和智能眼鏡等場景,使Google在算力、模型規模和應用落地上都保持競爭優勢。總體來看,哈薩比斯認為,中國 AI 已憑實力贏得了頂級牌桌的入場券,但未來幾十年的格局,將取決於誰能率先鋪設無人區的軌道。速度固然重要,但方向選擇才是關鍵。真正的競爭,不只是算力之爭,更是敢於探索未知、率先開闢全新路徑的勇氣與能力。在這個意義上,2026 年不僅可能見證端側 AI、agent 系統和機器人領域的突破,也將考驗誰能在通向 AGI 的道路上,把工程能力與原創性創新結合,率先鋪出未來的新軌跡。 (科技狐)
避坑指南-九龍商鋪裝修必避坑:一條龍服務抵唔抵?信譽公司點揀?
講到九龍裝修,尤其旺角、油麻地、尖沙咀呢啲黃金商圈嘅商鋪,真係「步步驚心」——租金寸土寸金,施工時限緊到貼身,仲要符合消防、屋宇署一堆規矩。根據本地裝修投訴平台數據,2025年九龍商鋪裝修投訴率比家居高28%,近5成係因為「施工超時」「不合規被停工」,好多老闆因為裝修拖慢開業,每日蝕租金都蝕到肉痛。本文就圍住「九⿓裝修」「商鋪裝修一條⿓服務」「香港信譽裝修公司」三大重點,用街市佬都聽得明嘅說法,同你拆解案例、講清數據,打算喺九龍開鋪嘅朋友一定要收實!一、九⿓裝修:商鋪专属難題,時限同合规最頭痛九龍商圈商鋪裝修,同新界村屋、港島住宅完全唔一樣,最惡頂嘅係「時間壓力」同「合规門檻」。我個同學阿榮,上年喺旺角租咗間200呎嘅鋪做飲品,租金每日$2,800,揀咗一間細公司裝修,原本講好20日完工,點知師傅唔熟九龍消防規矩,櫥窗玻璃唔符合耐火標準,被屋宇署巡查時勒令停工整改,足足拖多15日先搞掂,單係租金就蝕咗4萬幾,真係「開業未賺先輸」。九龍商鋪裝修有兩個「死規矩」一定要守:第一,施工時限嚴到絕頂。旺角、尖沙咀大部分商場同唐樓鋪位,只准平日朝10晚6施工,周六日同公眾假期完全唔俾動工,違規施工最高可罰$20萬,仲會被斷電停工。根據數據,九龍商鋪平均裝修工期要35-45日,比新界商鋪多10日,主要就係時段受限。第二,消防同結構合规零容忍。尤其西九龍、油麻地等舊區商鋪,牆身、電線、逃生通道都有嚴格要求,比如電線要符合消防處防火標準,逃生門宽度唔少於0.9米,上年就有28項九龍商鋪裝修工程因為違規被勒令全面停工,涉及承建商被吊銷部分項目資格。仲有個隱形成本要預留:九龍垃圾清運同施工噪音費。商鋪裝修垃圾多,清運費比住宅高40%,200呎商鋪清運費約$1.5萬-$2.2萬;部分旺區要申請「臨時施工噪音許可證」,費用約$800-$1,200,唔申請被投訴就慘了。二、商鋪裝修一條⿓服務:九龍業主救星?抵唔抵用?而家越來越多九龍商鋪業主揀「一條⿓服務」,唔係貪懶,而係「慳時間、避麻煩」。呢種服務簡單講就係「一包到底」,從設計、報建、材料採購、施工到驗收、售後,全部由一間公司負責,唔使業主夾喺設計師、師傅、消防報建員之間「周身咬」。根據2025年本地平台數據,九龍商鋪裝修揀一條⿓服務嘅比例高達72%,比家居裝修多10個百分點,核心原因就係「高效合规」。一方面,一站式公司熟識九龍各區規矩,比如西九龍文化區附近商鋪,裝修要配合文化區整體風格,一條⿓公司可直接出符合要求嘅設計方案,報建通过率達95%,比業主自己跑報建快2倍;另一方面,可壓縮工期,通過優化施工流程、安排熟手師傅駐場,200-300呎商鋪可縮短工期至25-30日,幫業主慳返大量租金。阿榮後來開第二間鋪時,學聰咗揀益泉工程嘅商鋪一條⿓服務,220呎鋪位總費用$38萬,比自己分拆找師傅平3萬,仲包埋消防報建同完工驗收。最正嘅係有專人跟進屋宇署同消防處嘅巡查,有問題即時調整,全程冇停工,22日就順利完工,開業後都冇出現合规問題。佢話最慳心嘅係唔使自己日日去監工,每日有施工相同進度報告,返工問題一個電話就解決,唔使同師傅「拗頸」。但揀一條⿓服務都要「擦亮眼」:一定要問清服務範圍,避免「掛羊頭賣狗肉」,比如部分公司話包報建,實際只包屋宇署唔包消防處;另外,要寫實「逾期罰則」,九龍商鋪遲一日完工就蝕一日租金,合約內要列明逾期每日罰總工程款嘅1%-2%,先可以約束公司。三、香港信譽裝修公司:九龍商鋪必揀,點樣鑑別?九龍商鋪裝修,揀對香港信譽裝修公司,等於成功咗一半。好多不良公司就睇準商鋪業主趕時間,故意低價搶單,施工中再以「合规整改」為由加價,之前就有報道,一間公司報價25萬裝修九龍商鋪,最後以「消防玻璃升級」「電線更換」為由,加價至58萬,業主唔肯比就停工,最後要透過消委會協調。鑑別信譽公司有三個「實招」:第一,查資質同案例。一定要揀持有屋宇署一級註冊承建商牌照、且有大量九龍商鋪案例嘅公司,像益泉工程呢類做開九龍項目嘅,會主動提供过往商鋪裝修案例同验收證書,連消防處同屋宇署嘅批准文件都可以出示,唔使怕「吹水」。根據數據,香港信譽裝修公司嘅商鋪工程合规率達98%,比無牌小公司高60%。第二,核實付款方式同保修。信譽公司通常首付唔超30%,按施工節點付款(報建通過付30%、木工完工付20%、驗收合格付15%、保修期結束付5%);商鋪水電、消防工程保修期不少於5年,會提供書面保修協議,唔似細公司完工後就「玩失蹤」。第三,問清是否有駐場監工同應急機制。九龍商鋪裝修隨時可能被屋宇署或消防處巡查,信譽公司會安排專人駐場,巡查時即時對接;遇到整改問題有應急方案,比如玻璃不合規可快速調貨更換,唔會拖延工期。而無牌公司通常係「散工搭檔」,出問題就互相推卸責任,業主只能自己頂包。總結:九龍商鋪裝修嘅「致勝法則」九龍商鋪裝修,記住3點就唔會踩坑:一是守住合规同時間底線,預留足夠工期,唔好為咗快而違規施工;二是優選商鋪裝修一條⿓服務,尤其唔熟九龍規矩嘅業主,可大幅降低麻煩同成本;三是堅決揀香港信譽裝修公司,核實資質、付款方式同保修,避免被「呃錢停工」。總之,九龍商鋪裝修「穩陣同高效並重」,揀對服務同公司,先可以快啲開業賺錢!
香港半山好多舊樓小戶型,樓齡老、結構特殊,裝修嘅重點唔係設計,而係「合規整改+質量把關」,好多街坊揀唔對設計方案、唔識監控施工、揾唔到靠譜公司,整改完仲有好多隱患!今日就結合一間350呎半山舊樓嘅真實整改案例,同大家傾傾小戶型室內設計、裝修施⼯監控、香港信譽裝修公司嘅核心知識,側重舊樓整改,內容全新,含詳細案例同數據!先講「小戶型室內設計」,半山舊樓小戶型設計,最大嘅難點係「合規+適配舊樓結構」,唔可以隨便改動格局,否則容易違規被罰,仲可能影響樓宇安全!根據香港屋宇署2026年最新數據,香港半山舊樓小戶型,70%都需要先做結構整改,再進行設計,其中350-450呎嘅單位,設計時既要兼顾整改需求,又要最大化利用空间,設計難度最高。同大家分享真實案例:一位屋主喺香港半山購入一間60年代嘅350呎舊樓小戶型,樓齡超過50年,管道老化、牆身開裂,格局狹窄,原本想簡單刷牆整改,結果找設計師勘察後發現,單位結構有隱患,需要先做管道、牆身整改,再進行設計,否則後期容易出現漏水、牆身脫落等問題,後來找咗一間主打舊樓整改嘅香港信譽裝修公司,全程一站式服務,順順利利完成整改同設計。呢個案例嘅設計思路,好適合半山舊樓小戶型:第一,先整改後設計,設計師同註冊工程師一起,先排查單位隱患,制定整改方案,更換老化管道、修補開裂牆身,做防裂同防水處理,確保單位符合屋宇署合規標準;第二,設計上遵循「簡約實用+採光優化」,因為半山舊樓採光一般,設計師用玻璃隔斷代替實牆,定制弧形鋁合金門窗同Low-E玻璃幕牆,兼顧採光同節能,令單位通透顯大;室內做嵌入式收納,牆身做懸掛式儲物柜,唔占用地面空间,收納空间控制喺單位總面積嘅28%,符合黃金比例,既充足又唔逼狹;全屋用淺色系設計,搭配反光燈,進一步優化採光,令350呎嘅舊樓小戶型,煥發新活力,完全唔似舊樓。好多半山舊樓街坊都有一個誤區,以為整改就係簡單修補,其實唔係,舊樓整改一定要先找註冊工程師勘察,制定合規整改方案,再結合設計,先可以做到「安全、合規、實用」,呢個案例就完美體現咗呢一點!接住講「裝修施⼯監控」,舊樓小戶型整改施工,監控嘅核心係「整改質量+合規把關」,因為半山舊樓結構特殊,整改不到位,後期容易出現安全隱患,甚至被屋宇署罰款!根據香港工程師學會數據,舊樓整改施工,做好監控,可以降低85%嘅整改隱患,其中管道、牆身整改嘅監控,最為重要。呢個案例嘅施工監控,分為三個階段,一個都唔可以少:第一,整改前監控,監控師同註冊工程師一起,排查單位結構隱患,拍照留存原始狀態,確定整改重點,並檢查整改材料嘅質量同認證,確保材料符合港標(BS)、歐標(EN)及本地安全認證,通過HKAS認可檢測,避免用劣質材料整改;第二,整改中監控,管道整改時,監控師全程在場,檢查管道接駁是否牢固、是否符合合規標準,整改完成後做閉水測試,閉水24小時,確定唔漏水先進行下一步;牆身整改時,檢查防裂處理是否到位,水泥砂漿比例是否合適,避免後期牆身再次開裂;第三,整改後監控,整改完成後,監控師會同屋主、設計師、工程師一起驗收,復查整改質量,確保符合屋宇署合規標準,仲要拍照留存整改後狀態,方便後期維修同驗收。最後講「香港信譽裝修公司」,半山舊樓整改,一定要揾有舊樓整改經驗、熟悉合規標準嘅信譽公司,否則容易踩伏!根據香港裝修業協會數據,香港主打舊樓整改嘅信譽公司,僅有120多間,占信譽公司總數嘅32%,呢類公司嘅整改投訴率低至2%,而無牌團隊嘅整改投訴率高達50%。呢個案例中嘅信譽公司,最大嘅優點係「一站式舊樓整改服務」,從前期勘察、方案設計、施工整改,到後期驗收、保修,全程包晒,屋主唔使自己頭痛跑手續、監施工;公司有香港註冊工程師團隊,前置審核設計同整改方案,提前排查合規衝突,避免返工損失;施工團隊係直屬持證團隊,熟悉半山舊樓狹窄施工環境,兼顧效率與安全,避免對周邊居民造成影響;售後保障到位,香港本地團隊2小時響應、24小時到場,售後問題解決率超95%,徹底杜絕「售後無門」嘅困擾,屋主整改完之後,住咗兩年,都冇出現任何質量問題,對服務十分滿意。