李飛飛博士於 2025 年 11 月發表長文《From Words to Worlds: Spatial Intelligence is AI’s Next Frontier》。這是其深耕 AI 領域 25 年的重要思考結晶。全文以圖靈 “機器能思考嗎” 這一經典問題開篇,指出當前以大語言模型為代表的 AI 雖在抽象知識處理上成績斐然,卻存在脫離現實物理世界的短板。文章系統闡釋了空間智能的定義與核心價值,將其定位為支撐人類認知、創造力與文明進步的核心能力,同時提出建構具備生成性、多模態性和互動性的 “世界模型” 是解鎖空間智能的關鍵,還勾勒出空間智能從賦能創意到革新機器人技術,再到推動科學醫療突破的應用演進路徑,為 AI 下一個十年的發展指明了方向。In 1950, when computing was little more than automated arithmetic and simple logic, Alan Turing asked a question that still reverberates today: can machines think? It took remarkable imagination to see what he saw: that intelligence might someday be built rather than born. That insight later launched a relentless scientific quest called Artificial Intelligence (AI). Twenty-five years into my own career in AI, I still find myself inspired by Turing’s vision. But how close are we? The answer isn’t simple.1950年,當電腦還僅僅停留在自動化運算和簡單邏輯運算的層面時,艾倫・圖靈提出了一個至今仍能引發廣泛共鳴的問題:機器能思考嗎?他能洞察到常人未及的可能性,這需要非凡的想像力 —— 智能或許有朝一日能夠被創造出來,而非天生就存在。這一深刻見解隨後開啟了一場名為人工智慧的不懈科學探索。在我投身人工智慧領域的第二十五個年頭,圖靈的這一願景依舊在不斷給予我啟發。但我們如今距離那個目標究竟還有多遠?答案並非簡單就能說清。以 AI 領域的源頭性問題切入,奠定了全文的思辨基調。李飛飛通過回溯圖靈的經典疑問,既致敬了人工智慧的啟蒙思想,又巧妙地引出了核心矛盾 —— 經過數十年發展,AI 仍未完全實現 “機器思考” 的終極目標。她強調智能 “可被建構” 的核心觀點,既是對後續探討空間智能 “可被研發” 的理論鋪墊,也暗示當前 AI 發展尚未觸及智能的核心本質,為後文批判大語言模型的侷限性埋下伏筆。Today, leading AI technology such as large language models (LLMs) have begun to transform how we access and work with abstract knowledge. Yet they remain wordsmiths in the dark; eloquent but inexperienced, knowledgeable but ungrounded. Spatial intelligence will transform how we create and interact with real and virtual worlds—revolutionizing storytelling, creativity, robotics, scientific discovery, and beyond. This is AI’s next frontier.如今,以大語言模型為代表的前沿人工智慧技術,已經開始改變我們獲取和運用抽象知識的方式。然而,這些模型就如同在黑暗中雕琢文字的匠人:能言善辯卻缺乏實踐經驗,學識淵博卻沒有堅實的現實根基。而空間智能將徹底改變我們創造以及與現實和虛擬世界互動的模式 —— 它會給敘事創作、創意設計、機器人技術、科學發現等諸多領域帶來革命性變革。這,正是人工智慧的下一個前沿陣地。這裡點出,當前 AI 的核心短板並拋出全文核心論點。作者用 “黑暗中的文字匠” 這一形象比喻,深刻揭露了大語言模型的致命缺陷:僅擅長文字層面的資訊處理,卻脫離對物理世界的真實感知與互動能力。同時,她明確將空間智能定義為 AI 的下一個前沿,打破了當下 AI 研發集中於文字多模態擴展的侷限,為行業指出了從 “語言理解” 向 “世界感知” 跨越的全新方向。The pursuit of visual and spatial intelligence has been the North Star guiding me since I entered the field. It’s why I spent years building ImageNet, the first large-scale visual learning and benchmarking dataset and one of three key elements enabling the birth of modern AI, along with neural network algorithms and modern compute like graphics processing units (GPUs). It’s why my academic lab at Stanford has spent the last decade combining computer vision with robotic learning.自進入人工智慧領域以來,對視覺與空間智能的探索一直是指引我前行的北極星。這也是我耗費數年時間建構 ImageNet 資料集的原因 ——該資料集是首個大規模視覺學習與基準測試資料集,與神經網路演算法以及圖形處理器這類現代計算裝置一起,共同構成了催生現代人工智慧誕生的三大核心要素。同樣出於這個初衷,我在史丹佛大學的學術實驗室,在過去十年間始終致力於將電腦視覺與機器人學習相結合的研究。該段落通過結合自身學術經歷,增強了論點的可信度與說服力。李飛飛將自己建立 ImageNet 的行為、實驗室的研究方向與空間智能探索強繫結,既體現了她對這一領域研究的連貫性與執著,也從側面印證了空間智能的重要性 —— 畢竟 ImageNet 作為現代 AI 的三大基石之一,其核心價值正是為機器提供視覺感知的基礎,而這正是空間智能的重要組成部分。這一段落也為後文介紹 World Labs 的研發目標做了背景鋪墊,展現出其研究理念的一脈相承。Generative AI models such as LLMs have moved from research labs to everyday life, becoming tools of creativity, productivity, and communication for billions of people. They have demonstrated capabilities once thought impossible, producing coherent text, mountains of code, photorealistic images, and even short video clips with ease. It’s no longer a question of whether AI will change the world. By any reasonable definition, it already has.以大語言模型為代表的生成式人工智慧模型,已經從科研實驗室走進了人們的日常生活,成為數十億人用於激發創意、提升效率與日常溝通的工具。這些模型展現出了曾經被認為難以企及的能力,能夠輕鬆生成邏輯連貫的文字、海量的程式碼、高度逼真的圖像,甚至是短影片片段。如今,問題已不再是人工智慧是否會改變世界。以任何合理的標準來衡量,它都已經做到了這一點。李飛飛在此處先客觀肯定了生成式 AI 的巨大成就,避免了因強調空間智能而全盤否定現有技術的片面性。她列舉文字、程式碼、圖像等生成能力,既符合大眾對當前 AI 的認知,也為後文轉折做了鋪墊。這種先揚後抑的表述方式,能讓讀者更易接受後續關於 AI 短板的論述 —— 承認現有技術的價值,才能更好地理解為何需要向空間智能方向突破,而非停留在現有成果上。Yet so much still lies beyond our reach. The vision of autonomous robots remains intriguing but speculative, far from the fixtures of daily life that futurists have long promised. The dream of massively accelerated research in fields like disease curation, new material discovery, and particle physics remains largely unfulfilled.然而,仍有諸多目標至今我們仍難以實現。自主機器人的願景雖然充滿吸引力,但依舊停留在推測階段,與未來學家們長期以來描繪的、成為日常生活中常見設施的場景相去甚遠。而在疾病治療、新材料研發、粒子物理等領域借助人工智慧大幅加速研究處理程序的夢想,在很大程度上也尚未實現。該段落通過列舉具體場景,具象化了當前 AI 的能力邊界。李飛飛選取自主機器人、疾病治療、新材料發現等具有高關注度的領域,這些領域的共同特點是都需要 AI 具備對物理世界的感知、推理與互動能力 —— 而這正是大語言模型所欠缺的。通過指出這些大眾與行業期待已久的目標尚未達成,有力地論證了單純依靠現有技術遠遠不夠,進一步凸顯了研發空間智能的必要性與緊迫性。Spatial intelligence is the scaffolding of human cognition. It operates when we passively observe or actively create. It drives our reasoning and planning, even on the most abstract topics. And it shapes how we interact—whether through language or action—with others and our environment.空間智能是人類認知體系的腳手架。無論我們是在被動觀察世界,還是主動創造事物,空間智能都在發揮作用。它推動著我們的推理與規劃能力,即便面對那些極為抽象的事物亦是如此。同時,它還影響著我們與他人、與周邊環境互動的方式 —— 無論這種互動是通過語言交流還是實際行動來實現。此處是對空間智能核心價值的高度凝練。李飛飛用 “認知的腳手架” 這一比喻,精準概括了空間智能的基礎性作用 —— 如同腳手架支撐建築一樣,空間智能是人類所有認知活動的底層支撐。她打破了人們對空間智能僅侷限於 “空間感知” 的淺層認知,指出其對抽象推理、人際互動等多方面的深層影響,這一界定極大地提升了空間智能的理論高度,也為後文闡述建構空間智能 AI 的多元價值提供了理論依據。Unfortunately, today’s AI does not yet think this way. Despite significant advances in recent years—multimodal LLMs trained on vast troves of multimedia data have introduced basic spatial awareness, and state-of-the-art robots can manipulate objects in highly constrained settings—AI’s spatial capabilities remain far from human levels.遺憾的是,如今的人工智慧尚未具備這樣的思考模式。儘管近年來人工智慧取得了諸多重大進展 —— 經過海量多媒體資料訓練的多模態大語言模型已經具備了基礎的空間感知能力,最先進的機器人也能夠在高度受限的環境中操控物體 —— 但人工智慧的空間智能水平與人類相比,仍存在巨大差距。作者直面當前 AI 在空間智能領域的現狀,既不否認技術進步,也不迴避核心差距。李飛飛認可多模態模型和先進機器人在空間能力上的微小突破,體現了論述的客觀性;同時明確指出這些能力與人類水平相去甚遠,形成強烈對比。這種表述既避免了對現有技術的全盤否定,又為後文提出建構 “世界模型” 來突破這一差距的解決方案做了完美鋪墊,讓後續的技術路徑建議更具針對性。Building world models that unlock spatial intelligence requires something far more ambitious than LLMs: a new kind of generative model whose ability to understand, reason about, generate, and interact with semantically, physically, geometrically, and dynamically complex worlds—virtual or real—far exceeds that of today’s LLMs.要建構能夠解鎖空間智能的世界模型,需要開展一項遠比研發大語言模型更具挑戰性的工作:我們需要打造一種全新的生成式模型。這種模型在理解、推理、生成以及與語義層面、物理層面、幾何層面和動態層面均極為複雜的世界(無論是虛擬還是現實世界)進行互動的能力,都要遠超如今的大語言模型。這裡明確給出了突破空間智能瓶頸的核心方案 —— 建構世界模型,並凸顯了該方案的挑戰性。李飛飛強調這種新模型需跨越語義、物理、幾何、動態等多個維度,這一定位精準抓住了空間智能的核心需求:機器要像人類一樣綜合多維度資訊理解世界。同時,將其與成熟的大語言模型對比,既讓讀者清晰感知到研發難度,也暗示這一突破將帶來 AI 領域的下一次質的飛躍,為全文的技術構想劃定了核心方向。 (晚筀筆記)思維導圖參考: