“AI 的盡頭,是人間煙火。”距離春節還有十天,AI大戰提前進入了白熱化。而這次把戰場迅速燒熱的,是阿里的 AI 入口“千問”。2月6日,千問上線“春節30億大免單”活動,機制簡單粗暴——請全國人民喝奶茶。活動期間,使用者最高可領取21張、總價值525元的無門檻免單卡。這絕非又一場“外賣大戰”,而是一場 AI 辦事能力的“大考”。當成千上萬的使用者湧進 AI 產品,讓最先進的人工智慧與最落地的煙火氣相遇。Agent 時代下,每個人的生活決策已經可以交由 AI 完成。矽谷巨頭們正競相建構面向企業系統的“數字員工”,試圖讓 AI 接管辦公流中的繁瑣環節;而在中國,Agent 的落點則更早地切入了充滿煙火氣的現實世界,開始替人點一杯奶茶、訂一張車票。這並非技術能力的代差,而是基於土壤不同的路徑選擇。而千問,似乎要在幫人辦事這條道路上,走得更深更遠。01重新定義AI時代“搶紅包”2026年春節前夕,AI戰場的硝煙味比往年更甚。字節的“豆包”依託春晚的獨家贊助,試圖用AI生成內容延續短影片時代的流量法則;騰訊的“元寶”則背靠微信生態,試圖在社交連接中尋找AI的落點;百度依然固守搜尋與資訊分發陣地。這三者的共同點在於,它們爭奪的依然是使用者的“注意力時長”。 其本質延續了移動網際網路時代的經典公式:用更優質的內容或更順滑的互動,去爭奪使用者有限的時間與多巴胺,讓使用者願意在App裡多停留一分鐘。相比之下,千問選擇了一條更為艱難、也更為徹底的路徑。與其繼續在紅海中爭奪“使用者停留多久”,千問更在意的是:使用者是否願意把真實生活中的決策與執行,交給AI。因此,千問並未沿用傳統的現金紅包,而是選擇以“免單”切入春節場景。免單無法獨立存在,它必須嵌入真實的消費決策與完整的服務鏈路之中——使用者需要提出明確需求,由系統完成下單,並最終確認履約結果。這也意味著,免單不僅是一種促銷,更是一種被完整驗證的“服務交付”。之所以選中奶茶、外賣、出行等高頻場景,它們共同的特點是決策成本低、使用頻次高、反饋明確。這類日常需求更容易促成使用者完成“第一單”,而在 AI 產品的擴散周期中,“第一次成功交付”的價值,遠勝於反覆的功能演示和能力科普。事實上,AI 進入 Agent 階段後,真正稀缺的不再是模型能力本身,而是模型能力與 B端商業體系的整合能力。從本次活動來看,當使用者發出“點一杯奶茶”的指令時,後台的運行邏輯並非簡單的關鍵詞匹配,而是一次複雜的鏈式呼叫。首先是模型需要解析自然語言等參數,其次是將這些參數被轉化為 B 端系統可識別的 API請求,最後,模型需要遵循平台的計費規則(如配送費計算、優惠券抵扣),生成一個符合財務標準的結構化訂單,並推送到商家的接單系統。在這個過程中,AI 需要跨越單純的語義理解,要與複雜的交易系統、支付體系、履約網路及風控形成穩定協同。因此,千問發起的“AI免單”不只是一次C端流量活動,本質上更是一場大模型能力與B端商業化體系的深度實驗。對於這一策略,坊間不乏質疑之聲:一種典型論調認為:相較於海外廠商集中資源提升模型推理上限、強化多模態、推進基礎設施與系統擴展,國內部分廠商卻選擇在春節期間“發紅包、請喝奶茶”,似乎有點大題小作。但這種判斷,往往忽略了應用層本身:發紅包、請喝奶茶,並非簡單的應用噱頭,而是對模型理解能力、系統穩定性與工程協同的一次集中檢驗。忽視這一點,容易低估了國內廠商的技術投入,這實際上是在強迫千問去“理解”生意的運轉規則。這種“模型+商業”的無縫銜接,遠比單純技術迭代更為複雜。它要求平台必須具備深厚的B 端資源積累和系統介面標準,才能讓大模型真正下沉到商業毛細血管中。更重要的是,這類實踐並非工程團隊能夠自發完成,而是高度依賴內部組織協調能力。模型和真實資源之間的呼叫,背後考驗的是企業對 AI 商業化路徑的整體判斷。因此,千問的30億紅包免單並不是簡單的市場行為,它要求模型理解真實意圖、系統完成下單、支付順暢銜接、履約穩定可控,並在極短時間內承受千萬級使用者的並行呼叫,任何一個環節失效,都會被真實使用者立即放大。在這一過程中,任何一個Token的延遲、一個介面的報錯,都會被真實使用者放大。這種處理複雜極端並行的系統能力,恰恰是許多海外模型與應用公司都渴望擁有的。尤其是在 Agent 時代,對千問而言,它檢驗的並非補貼效率,而是 AI 是否已經具備在真實世界中“替人辦事”的能力——而從首日1000萬 筆 AI 訂單來看,答案正在變得清晰。02從 App 到 Agent:一次互動邏輯的重構一個行業共識是,大模型已進入“後參數時代”,各家基座模型的各項指標逐漸拉平,決定勝負的,不再是“誰的模型參數更多”,而是“誰能讓AI真正完成任務”。過去,網際網路遵循的,是一種“人適應軟體”的路徑——使用者需要穿梭於不同的 App,去適應既定菜單、按鈕和互動流程,才能獲取背後的服務;而現在,MaaS(模型即服務)正在重寫這一規則,在C端互動中,模型本身直接取代了App,成為了服務的交付介面。AI 牌桌上雖然巨頭林立,但若以 MaaS 的標準嚴苛審視,會發現大多數玩家手中都缺失了一塊關鍵拼圖。OpenAI 困於“場景懸浮”: 儘管GPT技術領先,但因缺乏原生應用場景,其模型始終處於“懸浮狀態”。無法嵌入消費、出行等高頻生活場景,導致其只能靠訂閱費和API變現。近期,德意志銀行資料顯示,其歐洲收入已現增長瓶頸,且面臨開源模型與巨頭的雙重夾擊。Google則困於“履約空白”: 坐擁海量資料與TPU算力,Gemini技術表現強勁,但受限於“資訊分發”的基因,Google缺乏電商、本地生活等線下履約體系。面對“即時配送”、“服務執行”等複雜任務,Google陷入了“能精準理解需求,卻無法直接滿足需求”的商業斷層。相比之下,阿里所具備的,並非單點優勢,而是一整套為 Agent 而生的基礎條件。過去四個季度,阿里在“AI+雲”領域的資本開支高達 1200 億元。這筆巨額投入支撐起了中國第一、全球領先的雲端運算網路,為上層應用提供了源源不斷的算力輸血。在算力之上,阿里打造了全球領先的“通義”大模型家族。2025 年發佈的通義千問 Qwen3 系列,作為業界首個具備“混合推理”能力的模型,創新性地融合了“快思考”與“慢思考”雙模式。它既能以極低能耗秒回日常問答,又能針對複雜邏輯進行深度多步推理,真正實現了“大腦”的又快又強。為了讓大腦有效指揮肢體,阿里百煉與 Qwen-Agent 框架建構了生態連接的“萬能介面”。這套工具層加速了 AI 在千行百業的落地,解決了模型與具體業務系統對接的“最後一公里”難題。而最核心的護城河,在於頂層的場景與履約體系。電商、即時零售、外賣、地圖和支付——這些阿里長期積累的實體能力,雖然最初並非為AI而生,但在AI作為新入口出現後,它們第一次有機會被整合進同一個呼叫框架中。既有頂尖的大腦(千問)理解意圖,又有龐大的軀幹(淘寶/天貓)承載交易,更有靈活的手腳(菜鳥/餓了麼)完成履約,最後還有強健的心臟(支付寶)完成商業閉環。當然,AI介入履約服務的這條路也最為艱難,它需要AI理解使用者意圖,還要與複雜的業務系統協同運作。任何環節失誤,都會被使用者感知並放大。風險本身就是壁壘,這種對“全鏈路協同”的極高要求,反而構成了阿里真正的護城河。從行業視角看,這條路徑也解釋了為什麼“AI + 實體”被認為是少數公司才能嘗試的方向。相比純模型公司,擁有現實世界介面的企業,才真正跨過了“工具”與“Agent”的分界線。03Agent 時代下的中美 AI 兩條路毫無疑問,關於 Agent 的敘事已經成為中美科技巨頭押注的下一站。無論是 OpenAI、Anthropic,還是 Google,幾乎所有頭部廠商都在嘗試讓 AI 從“對話者”走向“執行方”。差別不在於是否走向 Agent,而在於——Agent 被首先用來做什麼。前段時間,Anthropic 推出的 Claude Cowork,正是這一趨勢的典型體現。它將 AI 深度嵌入協作與辦公流程,試圖在知識工作場景中,重塑人與軟體的關係。這一動向,也直接衝擊了以 Salesforce、Adobe、SAP 為代表的傳統 SaaS 公司,相關企業股價隨之出現明顯波動。這背後,是一條極具代表性的“美國路徑”:Agent 優先進入的是辦公、開發、管理等生產力場景,核心目標是提升知識工作的效率,讓 AI 成為“數字同事”或“超級 Copilot”。而在國內,Agent 最先被驗證的,並非寫程式碼、做表格,而是點餐、購物、出行、訂票等日常事務。這並非能力差異,而是基礎條件與應用土壤的不同所共同塑造的結果。一方面,我們擁有全球最龐大的網際網路使用者規模,以及成熟的移動支付體系;另一方面,線上線下高度融合的消費與服務場景,為 AI 提供了天然的“試驗場”。在麥肯錫的調研中,已有至多 49% 的企業稱,AI 為企業實現了降本。其中,中國大陸企業在 AI 採用率上提升迅速,已達 75%,與北美地區差距縮小到 7%。在這樣的環境中,Agent被直接放進生活,接受最直觀、也最嚴苛的檢驗——能否把事辦成。從這個角度看,千問的策略,代表了一種務實的中國式路徑:優先尋找高頻場景,將 AI 能力接入日常生活,通過解決真實的使用者需求,來推動 Agent 技術的成熟與迭代。不妨大膽猜測,千問 30 億補貼買到的,並不只是訂單量,而是這代使用者對“下一個網際網路入口”的提前適應。Agent 時代的門,可能已經在這個春節,被推開了一條縫。 (雷峰網)