11月25日,Google DeepMind 首席技術官兼 Google 首席 AI 架構師 Koray Kavukcuoglu 接受了Google for Developers的訪談。本次對話探討了 Scaling Law的現狀、基準測試的本質、Gemini 關注的重點領域,強調指令遵循、工具呼叫和國際化,以及多模態模型最終走向“單一權重”的演進路徑等話題。Koray Kavukcuoglu 堅信,AI 進步的步伐並未放緩,Scaling 仍在持續。他指出,基準測試不等於進步,它只是定義“未解決問題”的臨時工具。當模型分數接近頂峰,舊基準便失效,真正的進步標準必須從“刷榜”轉向模型在現實世界中被科學家、律師、工程師等專業人士使用的廣度與深度。在技術路徑上,Koray 強調程式碼與工具呼叫是智能的全新“倍增器”。模型不僅是工具的使用者,更是工具的製造者。他認為,直接從軟體工程師等終端使用者處獲取的反饋訊號,對模型後訓練階段的質量提升具有決定性意義,這種“與產品整合並獲取訊號”的模式已成為理解問題的核心驅動力。Koray 預測,圖像生成與文字生成最終將統一於“單一模型權重”之下,儘管目前仍面臨像素級完美與概念連貫性的雙重挑戰,但這將是必然趨勢。此外,他透露Gemini 面臨的最大風險並非外界擔憂的安全問題,而是“創新枯竭”——即誤以為只要照搬成功公式進行擴展即可,他認為唯有持續在架構和理念上進行創新,才是通往 AGI 的唯一路徑。01 基準測試的侷限與 Scaling LawGemini 3 已經上線,反響積極。回看從 2.5 到 3.0 的處理程序,感覺進步的步伐並未放緩。目前業界對 Scaling有諸多討論,你認為這種趨勢還能持續嗎?此外,有些基準測試如 HLE、ARC-AGI-2 分數飆升,而像 GPQA Diamond 這樣的靜態基準測試依然屹立不倒。你是如何看待這些基準測試的演變以及它們與實際進步之間的關係的?Koray Kavukcuoglu:我對這些進步感到非常興奮,尤其是研究方面的進展。身處研究一線時,你會發現各個領域都充滿了令人興奮的事物,從資料、預訓練、後訓練到方方面面。我們看到了很多熱情、進步和新想法。歸根結底,這一切都源於創新和想法。我們做出的東西越有影響力,越能進入現實世界被人們使用,我們實際上就會獲得更多的靈感,因為你的接觸面擴大了,獲得的訊號種類也增加了。我認為問題會變得更難、更多樣化,隨之而來的挑戰也會升級,但這種挑戰是好事。這也是我們建構智能的動力。有時如果你只看一兩個基準測試,可能會覺得分數提升的空間變小了,但我認為這很正常。基準測試是在某個任務還具有挑戰性時定義的。隨著技術進步,舊的基準測試就不再能代表最前沿的水平了。於是你會定義新的基準測試。這在機器學習中非常正常。基準測試和模型開發總是相輔相成的。你需要基準測試來指導模型開發,但只有當你接近現有目標時,你才知道下一個前沿在那裡,從而定義新的基準。(關於 GPQA 等難題)那裡面確實有一些很難的問題。那些我們仍然無法解決的難題,依然在測試著某種能力。但如果你看看我們在 GPQA 上的表現,我們並不是停留在二三十分需要追趕到九十分,而是已經接近頂峰,所以它所定義的“未解決問題”正在減少。在某種程度上,尋找新的前沿和基準是件好事。定義基準測試真的很重要。如果我們把基準測試等同於進步,那並不一定總是一致的。進步是進步,基準是基準。理想情況下它們是百分百一致的,但現實從來不是這樣。對我來說,衡量進步最重要的標準是我們的模型被現實世界中的科學家、學生、律師、工程師所使用。人們用它做各種事情,比如創意寫作、發郵件。從簡單到困難的光譜,以及不同的主題和領域都很重要。如果你能持續在這些方面提供更大的價值,我認為那就是進步。基準測試只是幫助你量化這一點。02 程式碼與工具呼叫是智能的倍增器,模型本身正在變成一種可建構工具的工具你是如何考慮從一個模型版本到下一個版本的持續最佳化的?比如在指令遵循、國際化語言支援以及程式碼和工具呼叫方面,我們的最佳化目標是什麼?此外,作為 Gemini 3 發佈的一部分,我們推出了 Google Anti-Gravity 作為一個新的 Agentic 編碼平台。為了從模型角度提升質量,你有多看重這種“產品腳手架”(Product Scaffolding)在獲取反饋訊號方面的作用?Koray Kavukcuoglu:有幾個重要的領域。其中之一是指令遵循。這要求模型能夠理解使用者的請求並嚴格執行。你不希望模型只是回答它覺得自己該回答的內容。指令遵循能力非常重要,這也是我們一直在做的。對我們來說,國際化也很重要。Google 是一家非常國際化的公司,我們希望觸達全球使用者,所以這部分很關鍵。你必須持續關注這些領域。它們看起來可能不像知識的前沿,但因為要在那裡與使用者互動,所以非常重要。正如我所說,這一切都是為了從使用者那裡獲得訊號。(關於程式碼與工具呼叫)接下來,如果你進入稍微技術一點的領域,函數呼叫、工具呼叫、Agentic 行為和程式碼真的很重要。函數呼叫和工具呼叫之所以重要,是因為我認為這是智能的一個全新倍增器,不僅模型可以自然地使用我們建立的所有工具和函數進行推理,而且模型還可以編寫自己的工具。你可以認為模型本身也是一種工具。這是一件大事。顯然程式碼很重要,不僅因為我們是軟體工程師,還因為有了程式碼,你實際上可以建構任何在你筆記型電腦上運行的東西。而在筆記型電腦上發生的不只是軟體工程。我們現在做的很多事情都發生在數字世界中,而程式碼是這一切的基礎,它能與你生活中幾乎所有事情整合。這就是為什麼這兩者結合在一起能極大地擴展使用者的能力。我喜歡舉 Vibe coding 這個例子。很多人很有創造力,有很多想法,突然之間你讓他們變得高產了。從有創意到有產出,你只需要把它寫下來,應用程式就會在你面前呈現。大多數時候它都管用,而當它管用時感覺棒極了。這種反饋循環很棒。突然之間,你讓更多人成為了建設者。能夠建構東西的感覺是很棒的。(關於產品腳手架的作用)對我來說這非常重要。Anti-Gravity 本身是一個令人興奮的產品,但從模型的角度看它具有雙重價值。首先從模型端來看,能夠與終端使用者,在這裡是軟體工程師整合,並直接向他們學習,瞭解模型那裡需要改進,這對我們來說至關重要。Gemini App 也是出於同樣的原因,直接理解使用者非常重要。Anti-Gravity 和 AI Studio 也是如此。擁有這些我們緊密合作的產品,然後理解、學習並獲取使用者訊號,作用是巨大的。Anti-Gravity 一直是非常關鍵的發佈合作夥伴。雖然他們加入不久,但在發佈的最後兩三周,他們的反饋真的起到了決定性作用。Search AI Overviews 搜尋 AI 概覽也是一樣,我們從中獲得了很多反饋。對我來說,與產品的整合並獲取訊號是我們理解問題的主要驅動力。當然我們有基準測試,所以我們知道如何推動 STEM、科學、數學這些硬核智能的發展。但理解現實世界的用例真的很重要,因為技術必須在現實世界中有用。03 通過產品連接使用者是建構智能的路徑作為新任首席 AI 架構師,你的職責擴展到了確保 Google 的產品能真正利用這些模型,Gemini 3 發佈首日就覆蓋了所有產品介面。相比一年半前單純的研發,這種“既要模型好,又要產品用好”的雙重目標增加了多少複雜性?此外,我們在某種意義上正在與客戶共同建構 AGI,在這種開放模式下,你是如何考量安全與穩健性的?Koray Kavukcuoglu:確實增加了複雜性,但我們在建構智能。很多人問我身兼雙職的問題。我有兩個頭銜,但這在很大程度上是同一件事。如果我們要建構智能,就必須通過產品、通過連接使用者來實現。作為架構師,我試圖做的是確保 Google 的產品能獲得最好的技術支援。我們不是要親自“做”產品,我們不是產品經理,我們是技術開發者。我們開發技術,訓練模型。當然每個人都有自己的觀點,但對我來說,最重要的是以最佳方式提供模型和技術,然後與產品團隊合作,讓他們在這個 AI 世界中建構最好的產品。這是一個新世界。新技術正在定義使用者的期望、產品的表現形式、資訊的傳遞方式,以及你可以用它做的所有新鮮事。對我來說,這就是要在整個 Google 範圍內實現這一點,與所有產品團隊合作。這令人興奮,不僅從使用者獲得的產品角度,也從我之前提到的角度,那是我們的主要驅動力。感知使用者需求、獲取使用者訊號對我們來說至關重要。這就是我想做這件事的原因。這是我們建構 AGI 的路徑。這也是我們建構智能的路徑,通過產品。(關於安全與穩健性)而且我認為這實際上也是一個非常值得信賴、久經考驗的系統。這是一種我們正在越來越多採用的工程思維。在這個問題上保持工程思維很重要。當東西經過精心設計,你知道它是穩健的、安全的。所以我們在現實世界中做事,採用的是所有經過驗證的建構理念。這也反映在我們如何考量安全和安保。我們試圖從底層、從一開始就考慮這些,而不是事後諸葛亮。所以在做後訓練模型、預訓練和處理資料時,我們始終銘記在心。每個人都要思考這個問題。我們有安全團隊嗎?顯然有,他們帶來了相關技術。安保團隊也一樣。但關鍵是讓參與 Gemini 的每個人都深入參與這個開發過程,並將其作為第一原則。這些團隊本身也是我們後訓練團隊的一部分。當我們開發這些模型、進行迭代和發佈候選版本時,就像我們關注 GPQA、HLE 這些基準測試一樣,我們也關注安全和安保指標。我認為這種工程思維很重要。04 程式碼與智能體仍需突破最後的體驗瓶頸Gemini 3 的發佈就像 NASA 的阿波羅計畫,雖然參與者眾多,但這確實是 Google 全球團隊的共同努力。你如何評價這種跨國協作?同時,雖然模型在許多基準測試上都是 SOTA,反響也很積極,但如果快進到下一次發佈,還有什麼事是你希望列在“真希望我們做了 X、Y、Z”的清單上的?在享受當下的同時,你看到了那些具體的差距?Koray Kavukcuoglu:關於 Gemini 3,我們也剛反思過。對我來說,重要的一點是這個模型是一個真正的 Team Google 模型。每個 Gemini 版本的發佈都需要來自美洲、歐洲、亞洲等世界各地的人員參與。我們有遍佈全球的團隊在做貢獻。不只是 Google DeepMind 團隊,而是 Google 的所有團隊。這是一個巨大的協作成果。我們與 AI Mode 同步發佈,與 Gemini App 同步發佈。這些都不容易。他們在開發過程中與我們並肩作戰。只有這樣,在模型準備好的第一天,我們才能一起發佈。我們一直在這樣做。當我們說“跨越 Google”時,不僅僅是指那些積極建構模型的人,所有的產品團隊也在貢獻力量。(關於未來的差距)我認為應該兼顧。我們要享受這一刻,那怕只享受一天也是好的。這是發佈日,人們在讚賞這個模型,所以我希望團隊也能享受這一刻。但與此同時,在每一個領域,我們也看到了差距。寫作完美嗎?不完美。編碼完美嗎?也不完美。特別是在 Agentic 行為和編碼領域,我認為還有很大的提升空間。那是增長最令人興奮的領域之一。我們需要識別那裡可以做得更多,並且我們會去做。我認為我們已經走了很遠。可以說,對於那些從事編碼的人,無論是軟體工程師還是想建構東西的創意人士,這個模型基本上滿足了他們 90% 到 95% 的需求。我願意認為這個模型是他們能用的最好的工具。但在某些情況下,我們可能還需要做得更好。關於程式碼和工具使用,回顧 Gemini 的發展歷程,顯然我們在 1.0 版本時非常側重於多模態能力,而在 2.0 版本中,我們才開始建構一些智能體基礎設施。你覺得為什麼我們沒有從一開始就在智能體工具使用方面處於業內領先地位?畢竟在多模態領域,Gemini 1 從一開始就是業內領先的。Koray Kavukcuoglu:我不認為這是刻意為之。坦率地說,回過頭看,我認為這與模型的使用方式有關,也就是開發環境與現實世界的聯絡緊密程度。我們與現實世界的聯絡越緊密,就越能理解實際發生的真實需求。在 Gemini 的研發征程中,我們的起點是 Google 深厚的 AI 研究底蘊。我們擁有大量傑出的研究人員和輝煌的 AI 研究歷史。但 Gemini 的研發也是一個從研究環境向工程思維轉變的過程,讓我們進入了一個真正與產品緊密相連的領域。看著現在的團隊,我感到非常自豪,因為這個團隊的大多數成員,包括我自己,在四五年前還在寫論文。那時我們在做 AI 研究。而現在,我們站在技術的最前沿,通過與產品使用者的互動來開發技術。這是一種完全不同的思維模式。以前我們可能很久才出一個成果,現在我們每六個月建構一次大模型,然後每一到一個半月就進行一次更新。這是一個驚人的轉變,而我們成功跨越了這一轉變。05 圖像與文字架構正在趨同,最終將融合為單一模型的“物理理解力”隨著 Veo 3、Nano Banana 模型的出現,我們在產品化方面取得了巨大成功。在追求 AGI 的過程中,你是如何看待生成式媒體模型的定位?它們是否也是理解物理世界和萬物運行規律的關鍵部分?Koray Kavukcuoglu:如果你回到 10 到 15 年前,生成式模型主要集中在圖像上,因為我們可以更直觀地檢查結果。此外,這種理解世界、理解物理規律的想法正是開發圖像生成模型的主要驅動力。我們在生成式模型方面做過的一些令人興奮的工作可以追溯到 10 年前,比如 WaveNet。20 年前,我們還在做圖像模型。我在讀博士時,那時大家都在做生成式圖像模型。我們經歷過那個階段。我們當時有叫 PixelCNNs 的圖像生成模型。某種程度上,當時大家意識到文字領域能取得更快的進展。但我認為圖像模型的回歸是非常自然的。在 Google DeepMind,我們在很長一段時間裡都擁有非常強大的圖像、視訊和音訊模型。將這些能力結合起來是順理成章的。我們現在的方向正是我們一直強調的多模態,而且是輸入輸出層面的多模態。這就是我們的方向。隨著技術的進步,這兩個不同領域之間的架構和理念正在相互融合。過去這些架構截然不同,但現在它們正在高度趨同。所以並不是我們在強行整合什麼,而是技術在自然地融合。隨著這種融合,大家都明白了從那裡可以獲得更高的效率,理念在何處演進,我們看到了一條共同的路徑。這條共同路徑結合得非常好。Nano Banana 是最初的那些時刻之一,你可以對圖像進行迭代,可以與模型對話。文字模型通過文字擁有了大量的世界認知,而圖像模型則從另一個角度理解世界。當你將這兩者結合時,會產生令人興奮的化學反應,因為人們會感覺到這個模型理解了他們想要表達的神韻。我們談談 Nano Banana Pro,這是在 Gemini 3 Pro 之上建構的全新業內領先圖像生成模型。團隊是否看到了在 Pro 級模型中做這件事的早期訊號,即利用 Pro 的架構可能會在文字渲染和世界理解等更細微的用例上獲得更強的性能?Koray Kavukcuoglu:我認為這可能是我們看到不同技術協同發揮作用的地方。對於 Gemini 模型,我們一直秉持的理念是,每個模型版本都是一個模型家族。我們有 Pro、Flash、Flash-Lite 這一系列模型。因為在不同的尺寸下,你在速度、精準性、成本等方面會有不同的權衡。隨著技術融合,我們在圖像方面自然也有同樣的體驗。所以我認為團隊的想法是,既然有 3.0 Pro 的架構,我們是否可以利用在第一版中學到的所有經驗,通過增加尺寸來調整這個模型,使其更側重於圖像生成?我認為最終我們得到了能力更強的東西。它能理解非常複雜的文件。一些最令人興奮的用例是,你有一大堆非常複雜的文件,輸入進去,我們依靠這些模型來回答問題,你還可以要求它生成一張相關的資訊圖表,效果非常好。這就是自然的輸入輸出多模態發揮作用的地方,這感覺就像魔法一樣。(關於統一權重)Tulsee 曾承諾我們將擁有統一的 Gemini 模型權重。現在的進展表明我們實際上已經非常接近那個目標了,即在圖像生成和文字生成上實現統一,儘管歷史上架構是不同的。這是否是一個確定的目標?目前有那些因素在阻礙這一處理程序?Koray Kavukcuoglu:正如我所說,技術和架構正在對齊,所以我們看到這正在發生。人們在定期進行嘗試。但這只是一個假設,你不能基於意識形態來做這件事。科學方法就是科學方法。我們提出假設,進行嘗試,然後看結果。有時成功,有時失敗。但這就是我們必須經歷的過程。目標越來越近了。我很確定在不久的將來,我們會看到這些東西結合在一起。逐漸地,它將越來越趨向於單一模態。但這需要大量的創新。仔細想想,這其實很難。輸出空間對模型來說至關重要,因為那是學習訊號的來源。目前,我們的學習訊號主要來自程式碼和文字。這是輸出空間的主要驅動力,也是我們在這些方面表現出色的原因。現在,要能夠生成圖像,我們在影像品質上的調整已經非常精細。這是一件很難的事情。生成像素級完美的質量很難。而且圖像在概念上必須是連貫的,每個像素不僅關乎質量,還關乎它如何與圖片的整體概念相融合。訓練一個能同時做好這兩件事的模型更難。我看待這個問題的方式是,我認為這絕對是可能的。這終將實現。關鍵在於找到正確的模型創新來達成它。06 DeepMind 利用 DeepThink 等項目在主線外探索新邊界DeepMind 現在擁有許多業內領先的模型。13 年前你是 DeepMind 的第一位元深度學習研究員,當時人們對這項技術並不興奮,而現在它驅動著所有核心產品。當你反思這段旅程時,你想到了什麼?Koray Kavukcuoglu:這令人驚訝嗎?這是充滿希望的、積極的結果。當我在讀博士時,我想每個讀博士的人都一樣,你相信你所做的東西很重要,或者將會變得重要。你對那個課題充滿熱情,你認為它會產生巨大的影響。我當時也是這種心態。這就是為什麼當 Demis 和 Shane 聯絡我,我們交談後,我對 DeepMind 感到非常興奮。得知有一個地方真正專注於建構智能,並且將深度學習作為核心,我非常激動。在那個年代,擁有一家專注於深度學習、專注於 AI 的初創公司是很不尋常的。我認為那是非常有遠見的。後來我組建了深度學習團隊,團隊不斷壯大。我認為其中一件事,我對深度學習的方法一直是一種關於如何處理問題的心態。第一原則是它總是基於學習的。這就是 DeepMind 的核心,一切都押注在學習上。從我們早期的工作開始,到強化學習和智能體,以及我們要一路走來所做的一切,這是一段令人興奮的旅程。你投身這些事業,總是希望有一個積極的結果。但反思過去,我想說我們很幸運。我們很幸運生活在這個時代,因為我認為很多人投身 AI 或他們熱衷的領域,都認為那是屬於他們的時代,是技術將會成功的時候。但它確實正在當下發生。我們也必須意識到,AI 之所以能在當下爆發,不僅僅是因為機器學習和深度學習的進步,還因為硬體的進化達到了某種狀態,網際網路和資料積累達到了某種狀態。是許多因素因緣際會。我很幸運能實際從事 AI 工作並一路走到這一刻。(關於里程碑對比)回顧 AlphaFold 等歷史里程碑,與現在相比,我們在組織團隊、將科學轉化為結果的經驗上有何不同?DeepThink 作為一個在奧林匹克數學競賽中實戰的模型,在其中扮演了什麼角色?Koray Kavukcuoglu:我認為在如何組織團隊,或者什麼是成功的文化特質,以及如何將艱難的科學和技術問題轉化為成功的結果方面,我們在過去的許多項目中積累了大量經驗,從 DQN、AlphaGo、AlphaZero 到 AlphaFold。所有這些項目都極具影響力。通過它們,我們學到了很多關於如何圍繞一個特定目標、一個特定使命進行組織,以及如何作為一個較大的團隊進行協作。我記得在 DeepMind 早期,我們會有一個 25 人的團隊一起做一個項目,並且 25 個人一起署名寫論文。每個人都會對我們說,肯定沒有 25 個人真的都在做這個吧。我會說,不,他們確實都做了。因為在科學和研究領域,這種規模並不常見。我認為那種知識、那種心態是關鍵。我們通過這些經歷完成了進化。這真的很重要。同時,對於最近這兩三年,我們將這種經驗與工程思維相結合,即我們要開發一條模型主線,並且我們學會了如何利用現有模型在這條主線上進行探索。我看到這一點的絕佳例子,每次想到這個我都感到很高興,是我們的 DeepThink 模型。那些是我們用來參加國際數學奧林匹克競賽、ICPC 競賽的模型。我認為那是一個非常酷且恰當的例子,因為我們在進行探索。你挑選這些宏大的目標。國際數學奧林匹克競賽真的很重要,它涉及真正極難的問題。向每一位參賽的學生致敬,這真的是了不起的事情。能夠把一個模型放到那個賽場上,當然,你會有一種衝動去為此專門定製一些東西。但我們試圖做的是利用那個機會來進化我們現有的技術,或者構想出與我們現有模型相容的新想法。因為我們相信我們所擁有技術的通用性。回顧當年那篇論文只有 25 位作者,而今天 Gemini 3 的貢獻者名單可能有 2500 人。看到這些問題現在的規模如此之大,這種從科學小團隊向大規模工程協同的轉變帶來了那些思考?Koray Kavukcuoglu:確實如此。這對我們很重要,這也是 Google 最棒的地方之一:這裡有太多各自領域的頂尖專家。我們受益於 Google 擁有的全端方法,因為在每一層都有專家,從資料中心到晶片再到網路,以及如何大規模運行這些系統。目前已經發展到一種狀態,再次回到這種工程思維,即這些環節是密不可分的。當我們設計一個模型時,是基於它將運行在什麼硬體上來設計的。同樣,我們在設計下一代硬體時,也知道模型大概會往那個方向發展。這非常美妙。但是協調這一切,當然需要成千上萬的人協同工作並做出貢獻。我們需要認識到這一點,這本身就是一件美妙的事情。07 Gemini 最大的風險是創新枯竭在這個時代,你如何看待 DeepMind 在“純粹的科學探索”與“僅僅試圖擴大 Gemini 規模”之間的平衡?要繼續擴大規模顯然需要創新,你如何看待這種決策?Koray Kavukcuoglu:那是關鍵所在,找到這種平衡真的非常重要。即使是現在,當人們問我“Gemini 最大的風險是什麼”時,我思考過很多,我認為 Gemini 最大的風險是創新枯竭。因為我真的不相信我們已經找到了“成功秘籍”,接下來只需要照章執行就行了。我不相信這一套。如果我們的目標是建構智能,我們要通過產品與使用者一起實現這一目標,那麼擺在面前的問題是非常具有挑戰性的。我們的目標依然極具挑戰且尚未實現。我不覺得我們已經掌握了既定公式,只需要單純地擴展或執行。唯有創新才能實現這一目標。關於創新,你可以將其視為在不同尺度上,或在與當前方向不同的切入點上進行的探索。當然我們有 Gemini 模型,在 Gemini 項目內部我們也進行了大量探索。我們探索新架構、新想法、不同的做事方式。我們必須這樣做,我們也在持續地這樣做。這就是所有創新的源泉。但同時,我認為 DeepMind 或整個 Google DeepMind 進行更多的探索對我們來說至關重要。我們必須做這些事,因為有些東西可能受限於 Gemini 項目本身而無法在其中探索。所以我們能做的最好的事情是,無論是在 Google DeepMind 還是在 Google Research,我們都要探索各種各樣的想法,並將這些想法引入進來。歸根結底,Gemini 不僅僅是一種架構。Gemini 是你想要實現的目標。你想要實現的目標是智能,你想通過產品來實現它,使整個 Google 真正運行在這個 AI 引擎上。從某種意義上說,具體是什麼架構並不重要。我們目前有一套方案,我們有演進的方法,我們將通過它不斷進化。而這背後的動力源泉將是創新,永遠都是創新。因此找到這種平衡,或者找到以不同方式進行創新的機會是非常關鍵的。在 I/O 大會現場我親身感受到了你、Sergey Brin 和 Demis Hassabis 展現出的人性溫暖。當你思考幫助塑造和營運這個團隊時,這種文化對你意味著什麼?Koray Kavukcuoglu:首先非常感謝你,你讓我有點不好意思了。但我認為這很重要。我相信我們的團隊,我相信信任夥伴並給予人們機會。團隊的層面很重要,這至少是我可以說我在 DeepMind 工作期間學到的東西。因為我們曾經是一個小團隊,你在那裡建立了那種信任。然後當你成長時,如何維持這種信任很重要,要創造這樣一種環境,讓人們感覺到我們真的在乎解決那些具有挑戰性的技術和科學問題,那些能產生影響、對現實世界有意義的問題。我認為這仍然是我們正在做的事情。正如我所說,Gemini 就是關於這一點的。建構智能是一個高度技術化、極具挑戰性的科學問題。我們必須以這種方式去處理它。我們也必須懷著謙卑之心去處理它,必須時刻審視自己。希望團隊也有同樣的感受。這就是為什麼我總是說我真的為團隊感到驕傲,他們配合得驚人地好。今天我們在樓上的茶水間聊天,我對他們說:“雖然很累人,很艱難,我們都筋疲力盡了,但這正是它的本質。”對此我們沒有完美的架構。每個人都聚在一起,協同工作並互相支援。這很難,但讓這一切變得有趣和愉快的,以及讓你能解決真正難題的,我認為在很大程度上是因為擁有正確的團隊在一起並肩作戰。 (數字開物)