#晶片封裝
先進封裝,全速擴產
韓國 SK 海力士日前宣佈,將投資 19 兆韓元(約合 129 億美元)在韓國清州市建設一座先進晶片封裝工廠,項目計畫於今年 4 月動工、明年底完工。這一決定,是 AI 浪潮下儲存產業結構性變化的直接體現。以 HBM 為代表的高端儲存,本質上是一種高度依賴 3D 堆疊與先進封裝工藝的產品。無論是 TSV、微凸點,還是與 GPU、加速器的近距離互連,封裝環節已從“成本中心”轉變為決定性能、良率與交付節奏的關鍵變數。這也正是 SK 海力士此次選擇直接投資建設先進封裝廠、而非僅擴充前道製程的核心原因。在半導體產業版圖中,封裝曾長期被視為技術含量較低的後端環節,但隨著 AI 晶片、HBM、Chiplet 等技術路線的加速成熟,這一認知正在被徹底打破。尤其是在先進製程放緩、單位製程紅利遞減的背景下,封裝正經歷一場前所未有的價值重估。根據機構資料,全球先進晶片封裝市場規模預計將從 2025 年的 503.8 億美元增長至 2032 年的 798.5 億美元,復合年增長率達 6.8%。這一趨勢背後,是 AI 大模型訓練、高性能計算、自動駕駛以及雲與邊緣計算對高頻寬、低功耗、高整合度封裝方案的持續拉動。站在 2026 年初這個時間節點,不只是儲存廠商,越來越多頭部封裝與測試企業也已啟動新一輪先進封裝產能佈局。可以預見,在未來幾年內,“拼先進封裝產能、拼落地速度”將逐漸成為行業常態,並深刻影響 AI 晶片與高端儲存的競爭格局。台積電:加速擴張在先進封裝這條賽道上,台積電無疑是No.1。作為全球半導體製造的絕對龍頭,台積電不僅在晶圓代工領域佔據超過60%的市場份額,更憑藉深厚的技術積澱、強大的產能掌控力以及與客戶的深度繫結,在先進封裝領域建立起難以踰越的競爭壁壘,尤其是CoWoS(Chip-on-Wafer-on-Substrate),從2023年AI浪潮爆發以來,始終是封裝產業的焦點。目前台積電的目前已在代表2.5D封裝的CoWoS上形成三大技術分支:CoWoS-S採用矽中介層(Silicon Interposer)技術,適用於中小型晶片封裝;CoWoS-R則採用再分佈層(RDL, Redistribution Layer)技術,提供更大的設計靈活性;CoWoS-L是台積電針對超大型AI晶片開發的產品。而在3D封裝領域,台積電推出了SoIC(System on Integrated Chips,系統整合單晶片)這一技術基於CoWoS與多晶圓堆疊(WoW, Wafer-on-Wafer)技術開發,相較2.5D封裝方案,SoIC的凸塊密度更高,可達每平方毫米數千個互連點,傳輸速度更快,功耗更低。除了以上兩種封裝外,台積電還悄悄佈局了CoPoS(Chip-on-Polymer-on-Substrate),其本質上是將CoWoS面板化,整合了CoWoS和扇出型面板級封裝(FOPLP, Fan-Out Panel Level Packaging)的優勢。首條試點產線定於2026年在VisEra廠區啟動,目標2026年中試產,2028年底全面達產。值得關注的是,有爆料稱台積電還計畫將SoIC與CoWoS進行技術融合,打造適配2奈米需求的混合封裝方案。這種“2.5D+3D”的組合拳,既能利用CoWoS的大面積封裝優勢,又能發揮SoIC的高密度互連能力,既能進一步提升晶片性能,又能最佳化成本結構、提升生產效率,具備廣闊的市場應用前景。在技術不斷改進升級的同時,台積電還在全力推進先進封裝產能擴充。根據供應鏈消息和多家機構預測,台積電產能規劃呈現出極為激進的增長曲線:2023 年底月產能約 1.5-2 萬片 12 英吋晶圓當量,市場供不應求;2024 年底提升至 4.5-5 萬片,增長 150% 以上;2025 年底目標 7-9 萬片,法人預估可達 9 萬片;到 2026 年底規劃達到 11.5-13 萬片,部分機構預測甚至高達 12.7 萬片。這意味著從2023年到2026年,僅用三年時間,台積電CoWoS產能就將增長6-8倍,年複合增長率超過60%。台積電還透露了細節:過去建一座CoWoS廠需要3-5年,現在已壓縮到1.5-2年,甚至三個季度內就要完成。而在產能佈局方面,目前台積電在台灣有多座先進封測廠,我們著重看一下近年來興建的幾座:竹南AP6廠是台積電的先進封裝旗艦基地。2023年6月正式啟用的這座工廠,是台積電首座實現3D Fabric整合前段至後段製程以及測試的全自動化工廠。目前竹南AP6廠已成為台灣最大的CoWoS封裝基地,承載著輝達、AMD等核心客戶的關鍵訂單。嘉義AP7廠主要負責下一代封裝技術。最初規劃建設2座CoWoS先進封裝廠,現已擴大至8座廠房的宏大規模。其中P1為蘋果專屬的WMCM(晶圓級多晶片模組)產線,P2、P3以SoIC為主,而CoPoS(Chip-on-Polymer-on-Substrate)暫定在P4或P5。整個廠區預計2028年開始量產,屆時將成為台積電先進封裝產能的又一重鎮。南科AP8廠則由舊廠改造而來。2023年8月,台積電斥資171.4億新台幣(約合37億人民幣)購買群創光電位於南科的4廠舊廠房,經過大規模改造後,於2025年下半年投產。供應鏈人士透露,該廠房未來的封裝產能將是竹南先進封裝廠的9倍,不僅承載CoWoS產線,未來扇出型封裝(InFO)以及3D IC等產線都可能進駐。除了台灣本土外,台積電近期還在在美國進行了佈局,其規劃在在亞利桑那州建設兩座專注於SoIC和CoPoS技術的先進封裝晶圓廠AP1和AP2,AP1聚焦3D堆疊技術(SoIC),AP2側重CoPoS技術,計畫2026年下半年開工,2028年底完工,雖然具體金額未公開,但業內估計兩座廠的總投資將超過50億美元。在產能和技術瘋狂擴張的同時,台積電也在進行組織架構的重大調整。在組織架構層面,台積電計畫任命首位先進封裝“總廠廠長”,實現旗下所有先進封裝廠區的統籌管理,這一舉措彰顯了其整合資源、聚焦核心業務的戰略意圖。現任台積電SoIC事業處處長陳正賢,憑藉深厚的行業資歷與卓越的管理業績,成為該職位的核心候選人。陳正賢曾歷任後端技術與服務副處長、竹南廠廠長等關鍵職務,在其主導下,SoIC事業處實現了技術突破與產能爬坡的雙重進展。如果出任該職位,陳正賢將全面整合台積電內部先進封裝資源,最佳化生產流程與資源配置,提升整體營運效率。其監管範圍將覆蓋InFO、CoWoS、WMCM、SoIC及CoPoS等全系列先進封裝產線,推動多技術路線的協同發展,助力台積電實現先進封裝業務的規模化、高品質增長。對於台積電而言,它的領先不僅是技術優勢,更是技術、產能和客戶生態的結構性霸權,多種技術的佈局,配合快速擴產,以及組織架構的深度整合,台積電成功將先進封裝從後端工序升級為前端戰略業務,其主導地位短期內幾乎不可撼動。日月光:借勢而起在先進封裝快速發展的同時,日月光作為全球最大的專業封測代工廠,同樣受益頗多,2025 年先進封裝相關業務在其封裝、測試及材料(ATM)業務佔比超過六成,先進封裝不再只是高端增量,而是成為了這家代工廠的發展主力。在 CoWoS 體繫上,日月光深度承接台積電產能外溢,重點切入 CoWoS 後段(oS)封裝與測試環節,客戶涵蓋輝達、AMD、博通及 AWS 等 AI 與伺服器晶片大廠。與此同時,日月光還通過 FOCoS(Fan-Out Chip on Substrate)建構自主 2.5D 封裝平台。該技術可顯著縮短電氣路徑、提升頻寬密度,被定位為 CoWoS 的成本與產能替代方案,預計 2026 年下半年進入量產,主要面向 AI 與資料中心晶片客戶。值得注意的,還有日月光對 FOPLP(扇出型面板級封裝) 的持續押注。其已在該技術上深耕超過十年,面板尺寸從早期的 300×300mm 推進至 600×600mm,並於高雄廠區投資約 2 億美元建設量產線,計畫 2025 年完成試產、2026 年進入客戶認證與商業化階段。而在產能擴張上,日月光的擴產也並非集中於單一廠區,而是以高雄為中心,形成多廠協同、梯次展開的佈局格局。其中最具標誌性的項目是 K28 新廠。該廠於 2024 年 10 月動土,規劃於 2026 年完工,技術定位直指 CoWoS 等先進封裝,核心目標是承接 GPU 與 AI 晶片持續放量帶來的高速需求。而與 K28 對應的是 K18 廠房的補位角色。日月光於 2024 年自宏璟建設購入高雄楠梓 K18 廠房,並在下半年追加超過新台幣 50 億元的再投資,用於匯入晶圓凸塊(Bumping)與覆晶封裝(Flip Chip)等製程。在此基礎上,日月光進一步啟動 K18B 新廠 工程,追加約新台幣 40 億元投資,持續加碼高雄產能。此外,日月光還通過收購穩懋位於南部科學園區高雄園區的廠房,收購重整塑美貝科技廠區,借助產業聚集與政策資源,進一步擴充半導體先進封裝產能。在高雄之外,日月光還在加速建設矽品中科廠與虎尾廠的新 CoW(Chip on Wafer),虎尾廠預計 2025 年進入量產階段。這些產線主要對應 CoWoS 前段製程,與日月光既有的後段封裝產線形成協同,提升整體交付能力與靈活度。除了台灣本土外,日月光也在海外加速佈局。其中最成熟、也最關鍵的是馬來西亞檳城。自 1991 年起,日月光便在當地深耕封測業務,覆蓋消費電子、通訊、工業與車用半導體等多個領域。2025 年 2 月,日月光第四、第五廠正式啟用,總投資約 3 億美元,主要服務車用半導體與生成式 AI 晶片需求。與此同時,日月光還通過租賃約 20 英畝土地,追加投資擴充檳城的先進封裝產能,進一步鞏固海外封測產能。在上述佈局推動下,日月光對 CoWoS 相關產能給出了清晰的放量節奏:到 2024 年底,月產能約為 3.2–3.5 萬片 12 英吋晶圓當量;至 2025 年底,規劃提升至 7.2–7.5 萬片,年產能實現翻倍增長。疊加 FOCoS 與 FOPLP 產線的逐步投產,2026 年日月光在先進封裝領域的總體供給能力,將出現一次結構性的躍升。在先進封裝的浪潮中,日月光已從單純的產能承接者,進化為具備自主技術話語權的關鍵參與者。一方面深度繫結台積電,通過承接 CoWoS 外溢需求穩固 AI 巨頭供應鏈地位;另一方面,通過押注 FOCoS 與 FOPLP 等差異化技術,在未來,日月光可能會與台積電形成既互補又競爭的“雙寡頭”格局,共同主導全球先進封裝的未來走向。安靠:持續提速在先進封測賽道中,美國的安靠(Amkor)憑藉穩固的市場地位與精準的戰略佈局,成為僅次於日月光的全球第二大封測企業,其圍繞先進封裝的擴張步伐同樣在持續提速。首先在技術路線上,安靠並未侷限於單一方案,而是針對性佈局多元技術以覆蓋不同場景需求,其中與英特爾的EMIB技術合作成為重要突破。2025年4月,雙方簽署EMIB技術合作協議,安靠韓國仁川松島K5工廠被選定為合作落地基地,搭建尖端EMIB封裝工藝產線,這也是英特爾首次將自有AI封裝工藝對外外包。EMIB技術捨棄大面積昂貴中介層,通過內嵌矽橋實現晶片互連,相較台積電CoWoS具備良率更高、成本更優的優勢,適配Google、Meta等雲端企業自研ASIC晶片需求。此次合作不僅是產能互補,更聚焦技術協同升級。安靠將依託松島工廠先進裝置與成熟封裝基礎設施,承接英特爾自有晶片及外部訂單封裝業務,為英特爾下一代EMIB-T技術量產鋪路。EMIB-T融合矽通孔(TSV)技術,可提升晶片速度與性能,支援HBM4/4e等新技術,是英特爾佈局AI半導體領域的核心戰略之一。雙方合作既擴大了EMIB技術的商業化應用,也強化了安靠在2.5D封裝賽道的多元技術支撐能力。在與英特爾的合作之外,安靠也在美國本土產能上持續加碼。2025年8月28日,安靠宣佈對亞利桑那州皮奧里亞市先進封測設施項目進行重大調整,選址不變但佔地面積從56英畝擴至104英畝,規模近乎翻倍,彰顯對先進封裝需求的加碼佈局。業界認為,此次調整貼合美國半導體供應鏈結構變化,前端晶圓廠投資熱潮下,後端封裝環節長期滯後,安靠該項目成為美國最具雄心的外包封裝項目,標誌著本土產業政策從前端製造延伸至後端封測。項目總投資由此前17億美元增至20億美元(約142.5億元人民幣),預計2028年初投產,將創造超2000個就業崗位,雖較原2027年底投產計畫推遲,但產能與定位更清晰,聚焦高性能先進封裝平台。新工廠將重點支撐台積電CoWoS與InFO技術,適配輝達資料中心GPU及蘋果自研晶片需求。雙方已簽署諒解備忘錄,台積電將菲尼克斯晶圓廠部分封裝業務轉移至安靠,規避跨洋運輸周轉耗時,首次在美國形成晶圓製造+封裝的本地閉環。蘋果已鎖定為該廠首家且最大客戶,為美國先進封裝能力背書。在海外佈局上,安靠精準卡位歐洲市場,於2023年2月與格芯達成深度戰略合作,共建大規模封裝項目。雙方約定將格芯德國德累斯頓工廠的12英吋晶圓級封裝產線整體轉移至安靠葡萄牙波爾圖工廠,該產線月產能可達2萬片12英吋晶圓當量,項目於2024年啟動裝置偵錯,2025年進入小批次試產階段,預計2026年實現滿產,滿產後可滿足歐洲地區40%的汽車電子晶圓級封裝需求。此外,安靠延續在亞洲市場的產能深耕優勢,目前在韓國、台灣、馬來西亞等地設有8座核心工廠,合計佔全球總產能的65%。值得關注的是其在台灣的桃園工廠,主要聚焦先進封裝,月產能1.8萬片,專門配套台積電台灣廠區的晶圓代工訂單,受益於台積電CoWoS產能擴張,該工廠2025年第三季度銷售額同比暴漲75%。可以看到,安靠的擴張始終緊扣行業趨勢與政策導向,在美國大力推動本土半導體產業鏈建設、歐洲加速汽車電子供應鏈自主化的背景下,其產能佈局既契合區域政策需求,又精準捕捉汽車電子、AI算力晶片等核心增長點。大陸廠商:積極佈局在全球先進封裝產業競爭白熱化的當下,中國大陸廠商同樣不甘示弱,正以更積極的姿態投入技術研發與產能建設,通過持續擴產、佈局海外與強化產業鏈協同,逐步在高端封測領域站穩腳跟。甬矽電子作為專注於中高端先進封裝的廠商,甬矽電子已建構起了高密度細間距凸點倒裝(FC)、系統級封裝(SiP)、晶圓級封裝(Bumping 及 WLP)等五大核心產品體系。而在近期,為進一步完善海外戰略佈局,推動海外業務發展處理程序,甬矽電子宣佈啟動總投資不超過 21 億元的馬來西亞積體電路封裝測試生產基地項目。其表示,馬來西亞是全球半導體封測產業的重要聚集地,尤其是檳城州已形成成熟的半導體產業叢集,吸引了眾多國際晶片大廠佈局,產業協同優勢顯著。甬矽電子選擇在此建廠,正是看中當地完善的產業生態、優越的區位優勢與豐富的人才資源,能夠有效貼近海外客戶,提升響應效率,進一步擴大海外市場份額,提升全球營收佔比,鞏固行業地位。從業務佈局來看,該項目主要聚焦系統級封裝(SiP)產品,下游覆蓋AIoT、電源模組等熱門領域,精準契合當前半導體市場的需求熱點。依託在積體電路封裝測試領域的技術積累與研發能力,甬矽電子能夠為海外客戶提供高品質的封裝測試服務,滿足客戶對產品性能與可靠性的嚴苛要求,進一步深化與海外大客戶的戰略合作。長電科技長電科技作為全球第三、中國大陸第一的半導體封測企業,在先進封裝領域佈局深遠,已建構覆蓋 Chiplet、HBM、2.5D/3D 整合、Fan-Out 的全技術平台,技術實力穩居全球第一梯隊。而近期,長電科技在先進封裝的汽車電子賽道突破備受關注。2025年12月,其旗下車規級晶片封測工廠“長電科技汽車電子(上海)有限公司(JSAC)”如期通線,標誌著長電科技在車規級封測領域實現關鍵佈局,為切入新能源汽車與智能駕駛核心供應鏈奠定基礎。該工廠坐落於上海臨港新片區,佔地 210 畝,一期建設 5 萬平方米潔淨廠房,自 2023 年 8 月開工以來,歷經兩年完成施工與裝置偵錯。工廠配備業內領先的自動化產線,引入 AI 缺陷檢測與全流程追溯系統,嚴格遵循零缺陷標準,全面滿足 AEC-Q100/101/104 車規認證要求,可提供覆蓋封裝與測試的一站式服務。據瞭解,目前多家國內外頭部車載晶片客戶已在JSAC推進產品認證與量產匯入,覆蓋智能駕駛、電源管理等核心領域,充分驗證了長電科技在車規級封測領域的技術實力與市場認可度。通富微電同樣是國內頭部封裝廠,通富微電的先進封裝佈局以技術突破與大客戶繫結為核心,早年間便通過收購 AMD 蘇州、檳城工廠形成戰略協同,獨家承接 AMD 超過 80% 的 CPU/GPU 封測訂單,為先進封裝技術迭代提供了穩定的應用場景。值得關注的是,通富微電在先進封裝領域的擴張動作尤為積極,近期發佈公告,擬向特定對象發行 A 股股票募集資金總額不超過 44 億元,精準投向四大核心領域,以破解產能瓶頸、最佳化產品結構。其中,汽車等新興應用領域封測產能提升項目擬投入 10.55 億元,總投資約 11 億元,建成後年新增產能 5.04 億塊,將進一步強化公司在車載封測領域的佈局,契合全球車規級半導體市場 11.51% 的年增長率需求;儲存晶片封測產能提升項目擬投入 8 億元,年新增產能 84.96 萬片,將承接 AI、新能源汽車驅動下的儲存晶片需求增長,把握儲存市場 12.34% 的年均複合增長機遇;晶圓級封測產能提升項目擬投入 6.95 億元,新增晶圓級封測產能 31.20 萬片及高可靠車載品封測產能 15.73 億塊,適配高端晶片對高性能、小型化的需求;高性能計算及通訊領域封測產能提升項目擬投入 6.2 億元,年新增產能 4.8 億塊,聚焦倒裝封裝與 SiP 技術,匹配 AI 算力與通訊晶片的封測需求。憑藉與 AMD 等國際大客戶的深度繫結,以及在本土市場的持續拓展,通富微電正加速向高端封測市場衝刺。從單極到多元在全球先進封裝格局中,儘管各大廠商都在加速擴產,但台積電的主導地位短期內仍難以撼動。憑藉 CoWoS、SoIC 等領先技術以及持續迭代能力,台積電在 AI 晶片封裝領域幾乎形成技術壟斷;其從先進製程到封裝的一體化服務模式,進一步強化了客戶粘性,尤其是與輝達等巨頭深度繫結後,其他廠商在短時間內難以替代。不過,其他專業封測廠正通過差異化路徑尋求突破。它們在產能配置上更靈活,能夠滿足不同客戶的定製化需求,在部分應用場景中也具備更強的成本競爭力;同時,這些廠商積極佈局 FOPLP 等下一代技術,試圖在未來封裝路線中搶佔先機。封裝廠商的集體擴張,本質上是對 AI 時代算力需求的一次行業級押注,在這場馬拉松式的競爭中,只有那些能夠在技術創新、成本控制與客戶服務之間找到最佳平衡點的企業,才能真正笑到最後。展望 2026-2027 年,當新增產能陸續釋放、供需關係重新平衡、技術路線逐漸清晰,我們將看到這場擴張浪潮的真正贏家。而對於整個半導體產業而言,先進封裝從 “配角” 到 “主角” 的轉變,已經成為不可逆轉的趨勢。 (半導體行業觀察)
CPO+PCB,成長最快的10家公司!
CPO與PCB是光通訊產業鏈中游關鍵環節,技術密集且價值度高。CPO實現光電器件與晶片封裝一體化,破解AI算力提升中的傳輸速率與能耗瓶頸,已從概念驗證邁向批次交付。高端PCB為高速傳輸提供核心載體,技術成熟度持續提升,二者共同支撐光模組等產品性能升級,成為技術規模化商用的核心支撐。二者核心驅動力來自下游爆發式需求:AI大模型訓練對資料中心傳輸提出極限要求,5G深度覆蓋推動網路流量激增,傳統方案難滿足,CPO與高端PCB成為剛需。本期主要梳理一下A股在CPO、PCB領域同時佈局且三季報淨利潤增長最快的10家公司,分享給大家一起探討研究。(參考資料為三季報扣非淨利潤增長率)特別聲明:以下內容絕不構成任何投資建議、引導或承諾,僅供學術研究、研討之用。第10. 威爾高PCB關聯:專業PCB製造商,產品覆蓋汽車電子、工業控制等領域CPO關聯:公司有100G、25G光模組產品。三季報扣非增幅:2025年三季報扣非淨利潤同比增長約76.39%第9. 生益科技PCB關聯:PCB基材龍頭,覆銅板產能全球領先,支撐高端PCB製造CPO關聯:間接服務CPO產業鏈,高端覆銅板可適配高速傳輸需求三季報扣非增幅:2025年三季報扣非淨利潤同比增長約81.25%第8. 方正科技PCB關聯:佈局PCB製造與方案服務,產品應用於通訊、消費電子CPO關聯:光模組是公司重點佈局方向之一三季報扣非增幅:2025年三季報扣非淨利潤同比增長約85.88%第7. 中京電子PCB關聯:高端PCB核心廠商,深耕汽車電子、5G通訊等細分賽道CPO關聯:探索高速PCB技術,可間接配套CPO相關傳輸模組需求三季報扣非增幅:2025年三季報扣非淨利潤同比增長約114.89%第6. 本川智能PCB關聯:專注小批次定製化PCB,服務工業控制、通訊裝置客戶CPO關聯:公司有產品應用於光模組,光模組項目推進中三季報扣非增幅:2025年三季報扣非淨利潤同比增長約142.98%第5. 明陽電路PCB關聯:PCB製造商,產品涵蓋通訊、汽車、醫療等多應用場景CPO關聯:有400G、800G光模組技術儲備,其中400G已經小批次推向市場三季報扣非增幅:2025年三季報扣非淨利潤同比增長約224.13%第4. 勝宏科技PCB關聯:全球PCB重要廠商,高端多層板、HDI板產能優勢顯著CPO關聯:高速PCB技術成熟,可配套CPO模組的傳輸載體需求三季報扣非增幅:2025年三季報扣非淨利潤同比增長約317.75%第3. 生益電子PCB關聯:生益科技子公司,專注高端PCB製造,聚焦通訊、伺服器CPO關聯:間接服務CPO產業鏈,伺服器用高端PCB可適配相關需求三季報扣非增幅:2025年三季報扣非淨利潤同比增長約526.1%第2. 弘信電子PCB關聯:佈局FPC(柔性PCB),產品應用於消費電子、汽車電子CPO關聯:子公司有研發和生產光模組產品三季報扣非增幅:2025年三季報扣非淨利潤同比增長約829.4%第1. 興森科技PCB關聯:PCB樣板及快件龍頭,提供PCB設計、製造一體化服務CPO關聯:可提供CPO相關PCB樣板定製,支援產業鏈技術研發三季報扣非增幅:2025年三季報扣非淨利潤同比增長約1195.5%中國是全球光通訊製造與創新中心,光纖光纜、光模組等領域市場份額領先。在CPO、高端PCB材料等前沿領域,全球競爭格局尚未固化,疊加地緣因素推動供應鏈區域化重構,中國產業鏈有望突破關鍵環節,實現自主化升級,把握全球數位化轉型的長期機遇。 (黑馬挖掘機)
大晶片封裝,三分天下
在AI晶片快速發展的浪潮中,GPU、AI ASIC等高性能計算(HPC)核心,以及HBM(高頻寬記憶體),正成為採用 2.5D/3D 封裝技術的高端產品的主力軍。先進封裝平台對於提升器件的性能和頻寬至關重要,其重要性已使其成為半導體領域最熱門的話題,熱度甚至超越了以往的尖端工藝節點。近期,有關英特爾的先進封裝技術 EMIB 正被科技巨頭蘋果和高通評估的消息引發了廣泛關注:蘋果在相關招聘資訊中,尋求熟悉 CoWoS、EMIB、SoIC、PoP 等技術的 DRAM 封裝工程師;高通也在招募資料中心產品管理總監,要求熟悉英特爾EMIB技術。雖然這些動作尚不意味著兩大晶片設計巨頭已正式轉向,但它們明確透露出全球頂級自研晶片企業正在積極評估英特爾作為台積電之外的潛在替代方案。圖片來源:高通公司而在AI晶片的先進封裝領域,台積電、英特爾和三星已經形成了“三強鼎立”的格局。由於自身定位不同,這三家公司在產業鏈中也承擔著不同的封裝角色。據Yole Group的分析,短期來看,2025年第二季度先進封裝收入將超過120億美元。在人工智慧和高性能計算強勁需求的推動下,預計下半年市場表現將更加強勁。長遠來看,2024年先進封裝市場規模約為450億美元,預計將以9.4%的強勁復合年增長率增長,到2030年達到約800億美元。台積電:GPU與超大規模 HBM 的唯一答案台積電 CoWoS(Chip-on-Wafer-on-Substrate)是台積電開發的一種2.5D先進封裝技術,它允許將包括邏輯晶片、儲存器晶片和模擬晶片在內的多個晶片並排整合在高密度矽中介層上。CoWoS技術於2010年代初推出,經過近十年的持續迭代,已經成為全球高頻寬封裝的事實標準。目前使用 CoWoS 的廠商包括:輝達(H100、H200、GB200 皆採用 CoWoS 或 CoWoS-L)、AMD MI300 系列、Broadcom AI ASIC、Marvell部分加速晶片。其成熟度無可替代,但其問題同樣無可避免。第一,CoWoS產能嚴重不足:被輝達長期鎖死。外媒普遍估計,僅輝達一家就佔用CoWoS超過一半的產能。瑞銀預計,受Blackwell、Blackwell Ultra以及Rubin驅動,2026年輝達對CoWoS晶圓的需求量將達到67.8萬片,較今年增長近40%;另外,預計到2026年,輝達的GPU總產量將達到740萬片。加上 AMD、Broadcom,CoWoS進入“排隊周期 > 產品生命周期”的極端狀態。這意味著蘋果、高通、博通在評估新晶片封裝時,會處於“排不到隊”的被動局面。根據台積電在2025年第三季度的財報披露,高性能計算(HPC)業務的銷售額環比持平。台積電強調,這並非是AI需求有所減弱。恰恰相反,實際需求比公司在三個月前的預期更為強勁。營收增長的主要瓶頸在於先進封裝產能不足,特別是 CoWoS 技術,它限制了 HPC 產品的出貨量。對此,台積電正在緊鑼密鼓的擴產CoWoS產能。據大摩的預估,台積電計畫2026年底前將其CoWoS產能從原先預估的100kwpm(千片/每月)擴大20%以上。目前預期CoWoS產能將達到至少120-130kwpm。第二,大中介層成本高昂,封裝BOM成本飆升。CoWoS的鐳射中介層面積高達數百平方毫米,且是65nm/45nm等成熟節點,但仍貴。在先進封裝報價中,中介層往往佔據50%-70%成本。在某些客戶案例裡,“封裝比晶片本體更貴”。CoWoS-S第三,HBM堆疊越多,CoWoS熱密度越難管理。H200、GB200的HBM堆疊量比H100 更高,封裝區熱點進一步集中。總的來說,CoWoS是最好的選擇,但不是人人都買得起,也不是人人都排得到。台積電 SoIC(3D 堆疊)雖然能加速發展,但對成本與良率的壓力極大。英特爾EMIB成為Plan B如果說台積電CoWoS是“高頻寬王者”,那麼英特爾的EMIB + Foveros組合,則是靈活性、成本結構與本土化供應鏈的集合體。過去10年,業界討論英特爾更多集中在製程節點落後,但忽略了一個事實:英特爾在先進封裝上,是最早、也是最激進投入的玩家之一。如今,隨著蘋果、高通等頂級晶片廠開始招募 “EMIB Packaging Engineer”,英特爾的封裝技術路線首次進入全球手機SoC、大型ASIC客戶的審視窗口。那麼,為什麼是 EMIB?EMIB結構圖(來源:英特爾)EMIB(Embedded Multi-die Interconnect Bridge)本質是一種嵌入式矽橋——不是覆蓋整個封裝,只在需要高速互聯的局部區域增加高密度矽布線。如下圖所示,EMIB是在基板腔體中放置矽橋,並通過粘結劑固定;隨後在其上方疊加介電層和金屬走線層。通過在Chiplet上結合兩種不同的凸點間距(bump pitch),EMIB 可實現成本高效的異構整合,並支援超大規模的系統擴展。據英特爾的材料顯示,EMIB 是業界首個在封裝基板中嵌入矽橋的2.5D互連解決方案。自2017年以來已進入大規模量產,並被應用於伺服器、網路和高性能計算等領域的產品中。相比CoWoS:從架構上來看,CoWoS使用的是整塊大中介層,EMIB是小片矽橋按需嵌入,佔用的空間非常小。因此不會影響輸入/輸出(I/O)訊號的平衡,也不會破壞系統的電源完整性(power integrity)特性。這與完整的大面積矽中介層形成鮮明對比:在使用矽中介層的方案中,所有訊號和電源通孔(vias)都必須穿過中介層,帶來額外阻抗與噪聲;從成本上來看,由於CoWoS的中介層面積大,因而也會相對更貴一些;靈活度方面,CoWoS是固定面積、適合大晶片,EMIB更加適合定製ASIC、小型Chiplet;從散熱上來看,EMIB的局部互聯反而便於散熱。EMIB還具有三項關鍵優勢:支援超大規模、異構die組合,並允許高度定製的封裝佈局。能夠在相鄰die之間實現高速資料傳輸,同時僅需簡單的驅動/接收電路。可以為每一條die間互連單獨最佳化,通過為不同鏈路定製橋接結構,實現最佳化設計。因此,EMIB不是為GPU這種“記憶體頻寬怪獸”準備的,它的最佳舞台是:定製ASIC、AI推理晶片、基站/網路加速器、SoC級模組化設計、UCIe/Chiplet 互聯實驗平台等等,也就是說:EMIB的價值不是“更強”,而是“更通用、更靈活”。這恰恰是蘋果/高通/博通在下一代架構設計中需要的能力。據瞭解,英特爾也在繼續擴展其EMIB組合,隨著對更高電源供給能力的需求不斷提升,英特爾在其EMIB-M中將金屬-絕緣體-金屬(MIM)電容整合到矽橋中,以增強電源傳輸能力。在其EMIB-T方案中加入了矽通孔(TSV)。EMIB不僅可用於2.5D封裝,當EMIB與Foveros 2.5D 和 Foveros Direct 3D 結合使用時,能夠構成更具靈活性的EMIB 3.5D方案。黃仁勳先前也公開稱讚過Foveros,產業對其技術成熟度並非沒有信心。英特爾先進封裝的演進(來源:英特爾)EMIB 3.5D是一種混合式架構,它在同一個封裝中結合了:EMIB的矽嵌入式橋接、Foveros 的先進晶片堆疊(die stacking)工藝。這種混合架構利用Foveros的垂直堆疊能力(vertical stacking),再疊加EMIB的橫向高密度互連,從而在:封裝尺寸、計算性能、能耗表現、成本效率之間取得更優的平衡。EMIB 3.5D 解決了傳統封裝架構中的諸多限制,包括:熱翹曲、光罩(reticle)尺寸上限、互連頻寬瓶頸,它能顯著擴大封裝內部可利用的矽面積,為建構高度複雜的多晶片系統提供更大的設計空間。除了技術上的優勢之外,美國本土封裝產能也成為地緣政治驅動的“第二供應鏈”。台積電封裝集中在台灣(高雄、竹南),韓國三星封裝集中在韓國/東南亞,而英特爾正在美國本土建構先進封裝生產基地:包括新墨西哥州 Fab 9 / Fab 11x、俄亥俄州未來封裝線、萊克福裡斯特(加州)封裝研發線。對於美國本土雲廠商、AI 晶片企業的供應鏈來說,本土生產+高度可控+不依賴東亞封裝的優勢,遠大於單純的成本因素。因此,英特爾封裝不是“技術佔優”,而是產業鏈安全佔優。三星:從HBM供應鏈反向切入先進封裝三星封裝,更像是從 HBM 供應鏈“反向”切入 AI 時代的關鍵節點。如果三星 HBM 能全面滿足輝達等頭部客戶的要求,它就有機會借助 HBM 的供應鏈話語權,在封裝路線選擇乃至系統架構協同上獲得更大影響力。三星的代表性先進封裝技術主要是I-Cube(2.5D封裝)和X-Cube(3D封裝),其中I-Cube又包括I-Cube S/E兩種。與台積電的CoWoS、英特爾的EMIB/Foveros不同,三星的I-Cube技術是從“HBM 供應商角度”出發反向設計的,因此技術路徑明顯不一樣。具體而言,I-Cube S是大矽中介層(Si Interposer)的2.5D方案。I-Cube S與台積電的CoWoS-S 的架構幾乎同源:互聯方面都是使用整塊矽中介層、成本普遍中等偏高、頻寬支援 HBM3 / HBM3E(如下圖所示)。I-Cube S(來源:三星)那麼此處我們可以再來複習一下,為何要使用大的矽中介層?這主要是因為HBM堆疊需要極高的IO密度,高頻寬x多通道能夠跨越大的橫向面積,採用中介層布線可以非常寬裕,訊號完整性(SI)也更優,電源配送網路(PDN)也更紮實,比較適合大功耗晶片。I-Cube E則是使用Si Bridge + RDL Interposer的混合型低成本方案。如下圖所示,它沒有整塊矽中介層,取而代之的是RDL Interposer(扇出型重布線中介層),下層用 Si Bridge Die(小尺寸矽橋) 提供局部高密度互聯,類似英特爾EMIB的概念。I-Cube E在3D封裝領域,X-Cube是三星先進封裝技術的一個巨大飛躍。其核心方法採用在 Z 軸上堆疊邏輯裸片的方法,顯著提高了動態鍵合能力。憑藉這些創新,三星得以快速推廣其 Chip-on-Wafer (CoW) 和銅混合鍵合 (HCB) 技術。通過增加每個堆疊的晶片密度,X-Cube 進一步提升了產品的速度和性能。銅混合鍵合是X-Cube實現高密度互連的關鍵技術。從晶片佈局靈活性的角度來看,HCB 技術相較於傳統的晶片堆疊技術具有極大的優勢。三星Foundry正在積極開發超精細的銅混合鍵合技術,例如低於4微米的連接規格,以實現更高密度的3D堆疊。小結總的來看,如果說台積電的先進封裝更側重於圍繞以 NVIDIA 為代表的高端無晶圓廠客戶,英特爾則是在“為自家產品與潛在代工客戶重構一條新路徑”;相比之下,三星則主打HBM 疊加自家邏輯晶片或客戶 SoC 的一體化方案。AI晶片代工領域的競爭,早已不再是單一封裝工藝的比拚,而是在算力架構、供應鏈安全、資本開支和生態繫結之間的綜合博弈。對下游晶片設計公司而言,如何在不同封裝陣營間進行路線規劃、風險避險和長期產能鎖定,將直接決定下一輪 AI 產品的性能上限與交付確定性。而對包括中國在內的本土產業鏈來說,先進封裝既是被重塑的變數,也是難得的“換道超車”窗口。 (半導體行業觀察)
一文讀懂輝達下一代晶片封裝技術“CoWoP”
摩根大通稱,輝達正在探索的晶片封裝技術CoWoP,將利用先進的高密度PCB(印刷電路板)技術,去除CoWoS封裝中的ABF基板層,直接將中介層與PCB連接,具有簡化系統結構,更好的熱管理性能和更低功耗等優勢。該技術有望替代現有的CoWoS封裝方案。最近市場炒得火熱的晶片晶圓板封裝(CoWoP)技術,與現有的CoWoS封裝有什麼區別?對供應鏈有何影響?商業化前景如何?8月5日,據追風交易台消息,摩根大通在最新研報中稱,輝達正在探索一項革命性的晶片封裝技術CoWoP(Chip-on-Wafer-on-PCB),該技術有望替代現有的CoWoS封裝方案。摩根大通指出,這一技術變革將利用先進的高密度PCB(印刷電路板)技術,去除CoWoS封裝中的ABF基板層,直接將中介層與PCB連接。該行還在研報中詳細分析了"CoWoP"技術對於供應鏈的影響,認為對ABF基板廠商顯然是負面消息,卻是PCB製造商的重大機遇。雖然,摩根大通分析師認為該技術在中期內商業化機率較低,主要受制於多重技術挑戰,但是該行在研報中強調:無論CoWoP是否成功量產,輝達都通過系統級方法繼續引領資料中心AI基礎設施創新。01. 算CoWoP技術原理與優劣勢分析研報稱,CoWoP代表Chip-on-Wafer-on-PCB技術路徑。在完成晶片-晶圓中介層製造步驟後,中介層(頂部帶晶片)直接安裝到PCB(也稱為平台PCB)上,而不是像CoWoS工藝那樣繫結到ABF基板上。該技術的潛在優勢包括:簡化系統結構,通過減少傳輸損耗提高資料傳輸效率,確保NVLink互連更高的範圍;更好的熱管理性能和更低的功耗;降低每代產品都在上升的基板成本;潛在減少一些後端測試步驟。然而,摩根大通認為,這項技術存在關鍵挑戰。目前只有蘋果公司採用mSAP或SLP PCB技術,但其節距尺寸更大,PCB板面積更小,因此將此技術擴展到具有更高載流能力的大型GPU仍然是技術和營運挑戰。02. 供應鏈影響:IC基板負面衝擊顯著、PCB製造商的重大機遇摩根大通在研報中稱,對ABF基板廠商而言,這顯然是負面消息,因為基板附加值可能會大幅減少或完全消失,更複雜、精細節距的訊號路由將轉移到RDL層(中介層),而高端PCB層承擔封裝內路由步驟。摩根大通認為,對於PCB製造商,是一個重大機遇高速。研報指出:“性能與主機板高電流/電壓要求之間的權衡是阻止平台PCB實現真正基板規格的主要挑戰。mSAP是在實現25/25微米更精細線/間距尺寸方面最佳的PCB技術,但仍遠低於ABF的亞10微米線/間距能力。”因此,該行認為,具備先進mSAP能力以及基板/封裝工藝深度知識的公司將更有優勢。03. 演算法革新:中期內商業化機率較低無礙輝達創新領導力持續強化摩根大通分析師認為,由於多重技術挑戰,CoWoP中期內商業化的機率仍然較低。歷史上,更高的I/O數量和更精細的線/間距尺寸(CoWoS-L降至5微米,CoWoS-S約10微米)需要遷移到ABF基板。對於AI加速器,即使ABF基板也預計會在5/5線/間距尺寸之後失效。PCB技術即使使用mSAP,目前也只能達到20-30微米的線/間距寬度,與期望性能相比仍存在較大差距。據追風交易台此前消息,大摩也表示,當前高密度互連(HDI) PCB的L/S為40/50微米,即使是用於iPhone主機板的類基板PCB(SLP)也僅達到20/35微米,要將PCB的L/S從20/35微米縮小到10/10微米以下存在顯著技術難度。此外,摩根大通認為,輝達目前確定的路線圖(向CoWoS-L、CoPoS發展,在Cordelia Board中採用GPU插座)與CoWoP追求的新方向也相當矛盾。供應鏈研究顯示,高附加值封裝生態系統參與者(如台積電)參與度不高,主要集中在PCB廠商和特定的OSAT廠商,這降低了商業化的可能性。不過,摩根大通指出,無論CoWoP是否成功量產,輝達都通過系統級方法繼續引領資料中心AI基礎設施創新。“在半導體領域,輝達率先推出CoWoS-L封裝,探索CoWoP和CoPoS封裝技術,並可能領導大規模CPO(共封裝光學)應用和1.6T光學技術發展。”摩根大通稱,這種持續創新能力預計將使輝達在未來數年內保持GPU領域的領先優勢,並在與ASIC競爭中佔據主導地位。 (硬AI)
華為AI晶片新突破:四晶片封裝技術挑戰台積電!
華為近期提交了一項專利申請,涉及一種四晶片封裝設計,這可能用於其下一代AI加速器Ascend 910D。該設計模仿了輝達四晶片封裝的Rubin Ultra,但專利中更引人注目的部分是華為對先進晶片封裝技術的計畫。這表明華為正在開發可能與市場領導者台積電(TSMC)相媲美的封裝技術。這種技術最終可能使華為繞過美國製裁,並更快地趕上輝達的AI GPU性能。專利描述了一種四晶片封裝處理器的製造方法,雖然不能確定這是否就是Ascend 910D,但結合當前晶片行業的內部消息,可以合理推測該晶片正在開發中。專利中提到的晶片之間的互連方式類似於橋接(如台積電的CoWoS-L或英特爾的EMIB與Foveros 3D),而不僅僅是簡單的中介層。此外,用於AI訓練的處理器通常需要配備多個HBM級記憶體模組,這些模組可能使用中介層級互連。儘管中芯國際(SMIC)和華為在光刻技術上落後於台積電,但在封裝技術上可能與台積電相當。這將是中國繞過美國出口限制的關鍵發展,因為中國企業可以通過先進封裝技術將多個晶片組合在一起,使用較舊的工藝節點技術,從而實現與領先工藝節點晶片相當的性能。根據專利和行業消息,Ascend 910D的單晶片面積可能為665平方毫米,四晶片封裝後的總面積為2660平方毫米。每個910B晶片攜帶四個HBM晶片(假設每個85平方毫米),因此910D的HBM記憶體堆疊數量將增加到16個,DRAM的總面積將達到1366平方毫米。綜合來看,生產Ascend 910D處理器至少需要4020平方毫米的矽片面積。按照台積電的標準,這相當於五個EUV掩範本(858平方毫米),該公司計畫在2026年將其引入量產。儘管此前對華為Ascend 910D的傳聞持謹慎態度,但如今這些傳聞似乎更具可信度。華為確實在開發一款名為Ascend 910D的四晶片處理器,其性能預計將超過輝達的H100。然而,仍需注意,並非所有專利申請最終都會轉化為實際產品。除了Ascend 910D,華為還 reportedly 正在開發一款名為Ascend 920的未來處理器,預計與輝達的H20競爭。儘管這一命名方案似乎不合邏輯,但鑑於相關報導可能存在一定依據,仍需關注這一動向。 (晶片行業)