筆記君說:在AI浪潮席捲各行各業的今天,每一位企業家和創業者都面臨同一個問題:未來的機會究竟在那裡?被譽為“AI教母”的李飛飛,在前兩天的一次深度對話中,給出了她的答案。以下是李飛飛這次訪談中的自述部分,希望她的這些話,對你有所啟發。一、“空間智能”是AGI的一把關鍵鑰匙1.世界遠不止語言那麼簡單我先說一下我的信念:在技術上,確實有一些相通的概念,所以我也能理解有些人說“語言即世界”。宏觀地來說,我堅信這個世界遠不止語言那麼簡單。如果我們說的語言概念,指的是那種離散的、本質上更偏向“一維”的資訊——即便它能表達多維的內容,語言本身的呈現形式還是比較一維的。但這個世界其實要豐滿得多。我一直強調,空間智能包含諸多特性,比如物理屬性這些,都是超越語言範疇的。而且不管是人類的行為,還是大自然的運轉,很多東西既沒法用語言完全表述清楚,也不可能單靠語言就實現所有想做的事。我們每天睜開眼,從生存、工作、創造,到感受、感知,再到人與人之間豐滿的情感,這些日常裡的種種,從來都不是只靠語言就能完成的。當然“語言即世界”這樣的話確實挺好聽,聽起來也沒錯,因為它是非常籠統的一句話。當你一句話很籠統的時候,它可能錯不了。但從技術層面看,現在數位化是必然趨勢:視覺模型、空間智能、機器人模型,本質上都會走向數位化。可要是把數字和語言完全畫等號、當成一回事,那這個概念就變味了。如果連數字都能被叫做“語言”,那相當於啥都能往“語言”裡套,這就沒什麼好爭論的了。在我看來,資訊遠不止語言這一種,還有空間資訊,它和語言一樣美妙、一樣重要。2.“空間智能”到了爆發前夜現在AI大環境裡,大家對AI的期待確實有點太激進了。但我可以告訴你,我選擇創業的核心原因,就是覺得時間點到了。畢竟創業和搞科研不一樣,創業得緊密結合市場、尊重市場規律。但就像很多比我優秀的企業家說的,創業最關鍵的是踩準時間點——不能太早,市場和技術都沒成熟;也不能太晚,否則就沒了機會。空間智能技術在World Labs(中文名:空間智能)剛成立時,確實還早了點,但也沒早到需要等五六年、十年的程度。我判斷未來一兩年,它會迎來爆發式增長。你看現在視訊生成技術的飛速發展,再到我們做的World Models,我堅信這類技術在一兩年內還會有質的飛躍,市場應用的可能性也越來越清晰。我沒法簡單定義現在發展的速度是快還是慢,但能肯定的是,現在正是做空間智能的好時機。我們現在做的“世界生成”(world generation)模型,真的特別令人激動。它的應用場景太廣泛了——從數字創意、遊戲開發、影視製作、設計領域、建築行業,到VR、XR、AR技術,再到機器人模擬,每一個大領域裡又能細分出無數小場景。而這些場景,其實都藏著對三維空間的強烈訴求。生成式AI有個很特別的價值:它能降低原本高難度事情的門檻,進而打開很多你意想不到的新市場。生成三維空間就是件超難的事——這個世界上沒多少人能做到,而且用到的Blender、Unity這類工具,操作起來特別繁瑣。我自己試過,頭都大了。其實很多創作者腦子裡裝滿了好想法,只是被工具卡住了,而非缺乏創意。而AI既能給現有創作者賦能,還能讓很多原本覺得“這事跟自己沒關係”的人,發現新可能。就像我,以前根本不會碰Blender、Unity這類軟體,覺得又麻煩又費時間,但現在AI能賦予我這種能力,我肯定願意用——它能帶來太多新靈感、新機會了。所以我覺得三維世界模型特別讓人興奮:它原本是件對普通人來說難度極高的事,而AI能降低這項能力的使用門檻,這本身就是打開市場的絕佳機會。在我看來,沒有空間智能,沒有三維世界的生成式模型,就談不上AGI(通用人工智慧)。AGI就像一扇門,上面掛著好多把鎖,需要不同的鑰匙去開啟。我始終認為空間智能是其中一把關鍵鑰匙——不過這扇門並非非開即關,而是被一點點推開的。其實我一直不太糾結AI和AGI的區別。因為兩者的夢想是相近的,都是源於一種“科學”的好奇心:機器能不能思考?能不能自主完成事情?這是AI最初的夢想,AGI的目標似乎也沒偏離太多。不管叫什麼,這個夢想都得一步步實現,我們每往前走一步,就離它更近一點。而空間智能,必然是通往這個夢想的重要一環。不管是賦能人類的創造力(從遊戲、設計到工業應用),還是給機器人賦能,亦或是元宇宙、AR/VR的內容生成與落地,都離不開空間智能。3.演算法與資料,都是AI的核心工程、數學的發展路徑和進化的路徑是不一樣的,這就像蘋果和橘子的比較,它們的進化都是很慢的。進化的迭代速度遠慢於演算法迭代,而且碳基與矽基的運算邏輯也大不相同,所以從時間維度來看,兩者沒法放在一起比。但即便如此,進化依然給了我們很多啟發和靈感。這就說到資料的重要性了。當初我們實驗室提出“資料”相關概念,其實也借鑑了不少進化的思路:漫長的進化歲月,本質上就是一段巨量資料訓練的過程;但到了數字時代,我們不用再等幾十億年去收集資料,而是可以大規模、快速地積累資料。和大自然通過進化完成的“資料積累”比起來,我們現在一次能處理、看到的資料,可能相當於進化幾千萬年才沉澱下來的量。相信自己深思熟慮後的假設,也不是什麼怪事吧?走在科學路上,對於那些經過深度思考的假設,你總得有所堅信。但作為科研人,也得清楚有些假設註定是錯的——我當然也有過很多失敗的假設。而我現在堅信的這個假設,是琢磨了很久才得出的:它在數學上是歸納推理的邏輯。我整個博士階段都在做模型、搞演算法,積累了不少領悟,才慢慢意識到這一點。說白了,AI到今天在數學層面的核心,就是“泛化”(generalization)——本質上就這一件事。而泛化怎麼實現?核心就兩點:演算法和資料,而且兩者息息相關。演算法太複雜但資料不足,會過擬合(模型在訓練資料上表現優異,但在面對新資料時性能顯著下降,無法有效泛化的情況);資料太多但演算法不夠好,同樣會過擬合——這裡面藏著明確的數學邏輯。我算是電腦視覺領域早期做機器學習的那批博士生,很幸運的是,我的博士研究剛好趕上電腦視覺的轉折點——我們大量運用機器學習的理念,這讓我對“泛化”的理解更深刻(當然,不一定只有我理解得深)。但我那時候就明確看到了資料的重要性,所以一直堅持了下來。這又回到了好奇心的話題——那個求證假設的過程其實挺有意思的,全程充滿激情,就像一路打怪升級。只要沒被“妖怪”打敗,就接著往下打唄。模型和資料的關係,本質是螺旋式上升的。當年,ImageNet搭建起電腦視覺領域最大的資料庫,直接推動了電腦視覺的蓬勃發展;後來網際網路催生了海量自然語言資料,大語言模型也跟著迎來爆發;再看現在的視訊模型發展得這麼快,核心也是有足量視訊資料支撐;自動駕駛能飛速進步,也離不開頭部公司積累的海量路況、行駛資料。現在看似“又回到了資料和演算法”,其實根本算不上“回歸”——它們從來就沒離開過AI的核心。我有時候覺得挺有意思:就算AI發展到今天,大家還是更看重演算法。但真正做AI的人,不管是創業者還是大公司從業者,心裡都清楚:資料不是說比演算法更重要,至少是同等重要。演算法聽著更“酷炫”,資料的價值反而容易被忽視。但實際上,資料本身就是一門科學。4.空間智能,賦能於“機器人”的發展① 自動駕駛,是簡化版的世界模型自動駕駛汽車其實就是機器人——它是人類最早量產的機器人,但其實挺侷限的。你想啊,它就是個方盒子,基本只在二維路面上活動,只要別碰到別的東西,不管是車、行人還是路邊設施。但我們未來要做的三維機器人不一樣:它得在三維世界裡主動“碰”各種東西,幫我們洗碗、做飯、疊衣服。這麼一對比,就知道自動駕駛汽車其實還是挺簡單的機器人。所以對應的,它的世界模型也更簡單——畢竟要做的事兒就那麼點。當然我不是說自動駕駛不厲害,特斯拉、Waymo(全球自動駕駛標竿,前身為 2009 年Google自動駕駛項目)這些公司都很了不起。但從科學和宏觀的角度看世界模型與機器人技術,這頂多隻是個開始,接下來要做的事情複雜多了。我無法斷言特斯拉有沒有(世界模型)相關佈局。但至少不會是一個強生成性的模型,畢竟業務場景本身不需要這件事。但機器人不一樣,機器人訓練離不開生成式模型——你不可能收集到足夠多的真實場景資料。而且我們做的事情都和創意、設計相關,這些本身就需要生成能力,“生成”本身就是核心應用場景之一。② 機器人的三維能力,還在早期階段現在矽谷的機器人領域大火,我也特別喜歡這個領域,也一直很看好機器人的前景。但同時,我也覺得要保持冷靜:機器人研究其實還處在早期階段。首先,最核心的問題是缺資料。汽車行業發展了幾十年,還有無數人在開車過程中持續蒐集資料;可機器人目前基本沒有商業化應用場景,尤其是日常消費級場景,資料自然難收集。而生成式AI的出現,給機器人領域帶來了一條有意思又有前景的出路。像視訊生成這類技術,不僅提供了豐富的訓練想像空間,還能用於擬態——比如我們正在做的機器人模擬,就特別有前景;甚至在推理階段,還能用視訊模型輔助線上做規劃。可以說,正是機器人周邊領域(比如生成式AI)的快速發展,在反過來帶動機器人技術進步,這一點確實讓人激動。但機器人要真正實現商業化,還有一段路要走,尤其是日常消費級機器人。不過工業機器人早就落地了,畢竟它的應用場景相對單一,容易約束環境,而且也積累了不少資料。自動化駕駛和機器人兩者之間,既有可比性,也有不可比之處。自動駕駛從概唸到商業化,走了近20年:Google2006年就成立了小型自動駕駛研發團隊,直到2024年Waymo才正式上路。汽車行業的供應鏈、OEM體系、客戶場景都非常成熟,這一點讓自動駕駛的商業化比機器人快得多;但當年AI技術不成熟,自動駕駛在AI這條路上走了很久,而現在AI的發展速度肯定會更快。可除了工業機器人(或者說場景單一、易約束的工業機器人),目前並沒有像汽車那樣成熟的機器人應用場景。所以機器人商業化之路會比20年快,還是更慢,真的很難說。但我相信,AI層面的進展會比當年自動駕駛時期快一些;可反過來,機器人面臨的問題也更複雜——它要應對的是完整的三維世界。AI已經能做到非常出色,可要說今天的空間智能,能達到人類睜開眼就有的那種對三維世界的深層理解,還差得遠。比如物體間的物理關係、材料屬性、物理特性,這些我們人類能直觀感知的豐富資訊,AI還沒法完全掌握;更別說對社交資訊、人與人之間情感的理解,這些都屬於視覺理解的範疇,而我還沒提語言層面的複雜認知。人類本身就是極其複雜的存在。所以從進化和能力來看,AI在某些方面已經追上甚至超越人類,但在很多核心維度上,還遠遠不及。而且我作為深耕AI和科技領域多年的人,對空間智能的信仰,絕不是盲目崇拜。它源於對技術的深刻理解,源於這麼多年在這個領域的深耕,也源於我和同事們看到的技術機會與發展方向。創業確實需要情懷,但對科技趨勢的判斷,更需要紮實的邏輯和科學的判斷。二、AI的未來:人類有責任讓其“向善”1.機會,並非贏家通吃綜合來看,資料、算力、人才的整合能力很關鍵——現在能做好這些資源整合的公司,存活機率和勝率會更高。但我覺得,不能只盯著這些顯性因素。畢竟顯性因素一眼就能看到,也容易被大家熱議追捧,但光靠這些遠遠不夠。舉個簡單的例子,在AI coding領域,微軟應該是第一個下場的,推出了Copilot(微軟推出的跨平台生成式 AI 助手)。它可謂佔盡了天時地利人和:手握所有資源、坐擁現成場景,連GitHub(微軟旗下的開發者平台)都是自己的。可微軟最終沒能成為行業標竿,反倒是矽谷現在火起來的Cursor、Claude Code這些小公司,在巨頭圍剿下實現了突圍。這就說明,光有顯性因素根本不夠。如果大家都只盯著這些表面資源下判斷,很容易出現偏差。人類歷史上,從來沒有那個時代是大公司獨霸天下的——即便每個時代的大公司都手握超強的資源整合能力。所以這裡邊還藏著更關鍵的東西:創造力、機遇、執行力,還有對時間點的把握,這些都是決定成敗的核心變數。再加上,AI本身就是一門橫向技術,能催生出無數應用級機會,大公司根本做不完。這些機會,恰恰給了小公司足夠的空間:把某個應用做到極致,慢慢撕開市場缺口,完全有可能實現彎道超車。2.AI只是工具“AI是工具”,這其實是常識。工具本就是雙刃劍:人類史上所有工具,小到最初的火、石斧,大到核彈、生物技術,再到如今的AI,無一例外。我當然也認為,工具的使用必須向善,但同時也要防範它被誤用,不管是有意還是無意。所以我覺得,兩種極端都不理性:只追求發展而無視安全與向善,必然是災難;但天天空談倫理向善而停滯發展,也會錯失技術帶來的諸多福祉。就像做父母,你會教孩子用火做飯吧?既要告訴他們火能做飯的好處,也得讓他們知道用火的危險,這是再簡單不過的道理。AI既是權力的工具,也是向善的工具,但它永遠只是工具。在我看來,這工具會越來越強大,但在它真正不可控之前,它始終屬於人類——人類有責任讓它保持可控。但就像所有工具一樣,我們從來不會指望工具自己明白該做什麼:向善與否,本質是人類的責任。所以對AI的控制與引導,是法律、制度、教育和整個社會的共同責任。不同社會、不同個體或許有差異,但這份責任終究在人類身上。3.教育體系,到了徹底變革的時刻AI時代迫切需要我們更新教育理念和方式——既要讓孩子們學會用這個工具,借助它賦能創造力、助力學習;也要讓他們清楚工具可能存在的問題與風險。而且這絕不僅僅是教育孩子的事。我們總覺得該教育孩子,殊不知最需要被教育的其實是成年人自己。所以,自我教育、面向公眾的科普、給政策與法律制定者提供充足資訊和學習機會,這些都至關重要。說到底,對AI的發展與治理,本質上就是我們人類自身的學習、發展與治理——核心還是人的問題。在這個AI成為具備智力能力的工具的時代,它帶給我們的最大啟發,或許是讓我們更好地瞭解自己、治理自己——這裡的“自己”,既包括每個個體,也包括人類群體。現在關於AI的討論沸沸揚揚,大家都熱衷於談論這項技術。但說到底,不管是個體人性還是群體人性,欠缺的或許還是那份自省吧。對個體來說,時代正在劇變,再做“鴕鳥”逃避現實絕非明智之舉。這種變化必然帶來工作形態的重塑。任何重大科技革命都會引發職業變遷,有時是短暫陣痛、軟著陸,有時可能伴隨社會動盪。作為個體,還是要保持好奇心——對生命、對世界的好奇。那怕這份好奇心,在成年人的世界裡源於對未知的恐慌也沒關係,至少它能成為驅動你主動學習的動力。這一點,值得每個個體自省。而從群體層面來看,AI時代最急需革新的,是我們的教育體系。不管是國內的K-12教育,還是美國這邊雖不唯應試但仍包含應試、仍側重“知識填充”的教學模式,都亟待更新。AI正在不斷證明,很多事情機器能做得更好。如果還讓人類花十幾年、幾十年時間,去重複大半機器可替代的工作,無疑是對人類潛能的浪費。所以我特別想呼籲:所有關注教育、能影響教育政策以及踐行教育的人,都要牢牢抓住這個時代機遇。我們的教育方法論,已經100多年沒有本質變化了。我最大的期待是,100年後歷史學家回望21世紀上半葉時,會看到人類完成了一次真正的教育革命。借助AI賦能教育者與學生,把節約下來的大量時間和精力,讓學生們在老師的引導以及自我探索中,去積累那些AI永遠做不到的認知與核心能力。人類的潛力其實無比巨大,每個個體都是如此。我們的大腦遠未被充分開發,不管是作為個體還是群體,都還沒發揮出全部潛能。你只要看看人與人之間的能力差異,就能感受到這份潛力有多驚人:有些人展現出的能力,簡直像“超人”一樣。這說明,這種極致的潛能本就藏在人性之中,只是大多數人都沒能把它激發出來。而AI這個工具的出現,甚至它對人類工作帶來的衝擊,恰恰給了我們一個契機——重新審視並重構整個教育體系。我覺得真正的教育變革,應該打破工科與文科的固有界限:畢竟AI能讓所有人都學會程式設計,那這些人還能簡單歸為工科生嗎?AI也能幫更多人更好地感知美、讀書、作詩,文科的邊界也被打破了。所以,以前的分科邏輯完全可以改變——AI給了我們打破這種侷限的機會。但說到底,關鍵還是人怎麼使用這個工具。我最擔心的,是人類會放棄自我:覺得“AI這麼聰明,有沒有我都一樣”,這種想法太可怕了。“躺平”這個詞很形象,但背後的心態真的危險。人類有太多未被發掘的潛力,有太多創造世界的可能,有太多讓這個世界變得更美好的機會。而AI,終究只是一個工具而已。如果我們放棄了自身的能動性(agency),就等於放棄了改變自己、改變世界的好奇心與動力。說實話,我真的不懂什麼叫“AI就是世界”。就像有人說“一花一世界”,我能理解那份意境,但“AI就是世界”的說法,我實在摸不透它的核心含義。其實“AI只是工具”這句話的背後,本質是我們如何看待AI與人的關係——把AI當工具,意味著人類始終把自身放在更重要的位置,意味著我們更該關注自我的成長與價值。說到底,“AI是工具”這句話裡,藏著我對人的信仰——我信仰人性的潛力,信仰人類社會的韌性,我信仰的是人,而不是AI。尾聲李飛飛,是對技術趨勢的清醒判斷者。AI,是我們這一代人此生最大的機會。她說,AI時代,人類迎來一次教育的革命,從知識性教育到技能型教育,到認知結構,到人本身的教育,都可以改變。正是在這個時代背景下,筆記俠推出了中國首個面向企業家的AI時代PPE(政治、經濟、哲學)底層認知課程。以AI時代為背景,通過人工智慧科學、AI文明、經濟學、政治學、哲學、智能商業等視角,從底層把握AI時代,激發創業者們在AI時代的潛力,培養能駕馭AI範式轉移的決策者。如何擁抱AI時代,需要理解那些?要理解技術。人工智慧必然重構人類社會的底層邏輯。成為新人類,是決策者的宿命。要理解商業。當AI成為核心生產要素,企業的價值創作邏輯和增長範式會發生根本性變化。要理解世界。在波譎雲詭的世界中生存發展,決策者需要深刻理解AI時代下國際政治經濟體系運行的規律和趨勢。要理解中國。中國走向現代化的道路,必然建築在中國的文化基因上,理解中國才能穿越宏觀周期,活在中國,贏在中國。要理解自己。活出內心的自由和篤定,不被AI時代外界的震盪所撼動,決策者才有心力成為企業的定海神針。這,就需要回到決策的源頭:AI技術與文明、哲學、政治、經濟,重構我們的底層認知邏輯。我們一起做AI時代保持清醒和篤定的決策者。 (筆記俠)