AI創業最怕的一件事:把噪音當訊號|微軟 CTO Kevin Scott
Kevin Scott:“長期記憶”是AI創業最被忽視的機會2025 年 12 月 19 日,舊金山。矽谷創業社區 South Park Commons 的一場對話中,微軟 CTO Kevin Scott 聊職業拐點、與 OpenAI 合作、AI 時代更值錢的問題為什麼總被忽視。整場對話 56 分鐘,話題從創業試錯,一路聊到開源與閉源。他最關鍵的一句話是:AI 創業最怕的,不是技術落後,而是把“噪音”當訊號。什麼是噪音?看起來像積極訊號,但對你做的東西沒有價值,而且沒有關係的資訊。 媒體熱度、投資人興趣、技術熱詞,這些訊號容易獲取、容易量化,但可能正在把你引向錯誤的方向。這篇文章講四件事:第一, Kevin 如何學會識別正確的訊號。第二,今天的創業者面對什麼樣的環境。第三, ChatGPT 為什麼成功。第四, 如何識別被忽視的真實訊號。第一節|放棄有趣的技術,選擇值得做的事Kevin Scott 原本想當一名大學教授。博士期間他研究動態二進制翻譯,技術含量極高,但他後來放棄了。原因很簡單:這事除了我,幾乎沒人在意。他說:我花了大量時間研究這些最佳化方法,能提升系統幾個百分點性能。寫論文、被引用、繼續寫論文……然後呢?在學術界,這就是標準路線。但在真實世界裡,這些百分比的提升沒有任何意義。Kevin 第一次意識到:學術界的評價標準,和真實世界的價值判斷,根本不是一回事。學術界看重論文數量、引用次數、同行認可,這套機制清晰、容易量化。但真實世界在意的是:有多少人因此受益?產生了多大價值?這兩套標準不一致,甚至是衝突的。於是他從學術界出來,進入Google。他做的第一個項目,是廣告稽核流程的自動化。這事聽起來一點也不酷。Kevin說:其實就是做一套自動過濾規則,判斷廣告文案能不能用驚嘆號、有沒有成人內容。但這個問題值錢。每天 5000 萬美元的廣告被卡住,人工稽核處理不過來。就這麼點改動,最終每年幫 Google 省了近 10 億美元。這讓他得到創始人獎。從那時起,他確定了一條職業準則。做每一件事,第一眼先看它有沒有可能產生真正的影響,其次才是技術有多有趣。他說,人生是從放棄最複雜的技術,轉向最有價值的工作開始的。這是他第一次識別出正確的“訊號”。第二節|容易獲取的反饋,往往是噪音Kevin 20 年前做的那次選擇很簡單:學術界 vs 商業世界,二選一。今天的 AI 創業者面對的環境要複雜得多。現在做創業比過去任何時候都便宜。但也正因為便宜,試錯的人多了,噪音也就多了。什麼是噪音?他給出定義:看起來像是正反饋,但和產品價值無關的資訊。媒體熱搜、點贊數、風投的興趣,這些都可能是噪音。很多創業者依賴的這些訊號,恰恰也是最容易把你帶偏。因為這些訊號背後有自己的利益機制。媒體需要流量,選擇有話題性的故事。投資人看重多元的項目組合,對熱門賽道表現出興趣。技術社區追逐最新的模型、最大的參數量。但這些和有人願意為你的產品買單是兩回事。更麻煩的是,這些噪音還特別容易獲得。你發一條帖子,幾百個贊;寫一篇文章,上了熱榜;見幾個投資人,都說感興趣。你開始覺得方向是對的。但這可能只是說明:你踩中了一個熱門話題,成了轉發素材,而不是解決了真正的問題。很多創業者開始往熱門概念上靠:“我們是AI+教育”、“AI時代的瀏覽器”、“GPT時代的新筆記工具”……這些說法新穎、容易講,但不等於有人真正需要。Kevin 給了一個判斷方法:要分清楚兩件事。一件事是你希望它發生;另一件事,是它不管有沒有你都會發生。真正適合創業的,是後者。那麼,什麼才是真正的訊號?Kevin 用 ChatGPT 說明。第三節|當所有人卷模型,OpenAI在做什麼ChatGPT 上線時,用的是老模型。業內很多人都見過,Kevin 說,包括他自己在內,沒人想到它會成為爆款。那為什麼它成了?因為所有人在追一個訊號,OpenAI 在追另一個訊號。2022 年底,每個實驗室都在追逐容易量化的數字:更大的參數量、更高的benchmark、更先進的架構。但這些是噪音。OpenAI 關注的訊號是:普通人能不能零門檻使用互動是否足夠自然能否成為日常工具這些才是真實需求。ChatGPT 的改動極小:一套老模型,加上 RLHF,加上一個輸入框。技術上沒有任何突破。但它讓普通人第一次可以直接和 AI 對話,不需要任何技術門檻。Kevin 明確表示:“它不是我們見過最強的模型,但第一次讓 AI 直接進入了使用者生活。”在他看來,這類機會有三個特徵:技術能力已經夠了但沒人認真設計用法因為看起來太普通、太基礎、沒熱度而被忽略。這些機會不會出現在熱詞榜上,也講不出宏大的故事,但可能打開兆美元市場。關鍵是:如何識別這樣的機會?第四節|識別真實訊號的三個標準為此,Kevin 給出了三個判斷標準。標準 1 :看能力和使用的差距他說:現在不是 AI 不夠強,而是很多人不知道怎麼把它用好。這意味著什麼?意味著機會不在能力端,而在使用端。他舉了長期記憶的例子。現在大模型能對話,但記不住歷史。使用者每次都要重新交代背景,AI 像個永遠喝斷片的“實習生”。技術上能解決嗎?完全可以。只需要做資料管道、內容壓縮、歷史記錄。但沒人做。為什麼?因為這不會上論文,也拿不到媒體關注。。Kevin 說:很多人不願意做這件事,是因為它看起來像修修補補,不像創造。但這恰恰是真實訊號。因為使用者真的需要,技術能力已經夠了,只是沒人認真做。標準 2:看誰在製造噪音如果媒體在報導、投資人在追逐、大公司在佈局,這很可能是噪音。這就像 Kevin 20 年前的選擇:他做的是所有人覺得不夠酷的事,但恰恰解決了真實問題。今天同樣如此。已經有太多資源在追逐那些熱門賽道,你作為創業者很難勝出。真正的機會往往在被忽視的地方:大公司覺得太瑣碎、媒體覺得不吸引眼球、投資人覺得不夠宏大。正因為被忽視,競爭反而更小。標準 3 :做小實驗驗證Kevin說,做工具的成本已經非常低了。現在真正缺的,是願意動手的人。比如:讓 AI 記住使用者歷史。搭個簡單的上下文快取,看使用者是否真的需要。用現有工具搭建一個端到端流程。把 AI 對話、自動化工具、文件系統連起來,做一次完整閉環,看能不能真正替代人工。不寫 PPT,直接做互動原型。從產品體驗出發,而不是從概念包裝出發。現在是 AI 創業最好的時候,因為你可以不靠預測未來,只靠動手做個小實驗,就能找到好的方向。關鍵是分清噪音和真實訊號。你是追逐容易講的故事,還是解決真正的問題?結語|訊號比方向更重要Kevin Scott 說,他不追求快樂,只想做有意義的事。因為有意義的事,自帶清晰的訊號。20 年前,Kevin 只需要選擇:學術界還是商業世界。今天的創業者面對更複雜的環境:媒體熱度、投資人興趣、技術熱詞,那些是噪音?那些是訊號?Kevin 的方法是:不要靠判斷去猜,要靠行動去驗證。做工具的成本從未如此低,但噪音也從未如此多。找對訊號,比找對方向更重要。 (AI深度研究員)
奧特曼的“帝國隱憂”:多線擴張,正在拖慢ChatGPT
過去一年,一個令人費解的現像在OpenAI內部蔓延:即便ChatGPT推出了能在國際數學奧賽摘金、在頂級程式設計競賽奪冠的“最強大腦”,但普通使用者們似乎並不買帳。圖片由AI工具生成據外媒報導和OpenAI 9月發佈的資料顯示,多數使用者使用ChatGPT可能只是詢問相當簡單的問題,根本無需動用那些耗費巨大計算資源、需要“思考”半分鐘的推理模型。這一刺眼的資料,指向了OpenAI在巔峰之下隱藏的深刻危機:一場由CEO山姆·奧特曼親自推動的戰略擴張正引發嚴重的深層危機,包括組織架構割裂、多線作戰導致資源分散,以及技術路線與使用者需求嚴重脫節,這正將其王牌產品ChatGPT拖入競爭泥潭。01核心矛盾:前沿研究與大眾需求的“性能過剩”鴻溝OpenAI的核心矛盾,根植於其研究部門與產品團隊日益擴大的目標分歧。公司內部一個超過千人、相對獨立的研究團隊,近年來將重心押注在追求“推理模型”和“通用人工智慧”(AGI)這一終極目標上。這種模型雖然能在複雜數學和科學問題上表現出色,但其代價是高昂的計算成本和緩慢的響應速度,處理一個問題可能需要數秒甚至數分鐘。然而,這與ChatGPT數億主流使用者的需求嚴重脫節。AI評估機構LMArena負責人彼得·戈斯特夫所言,“OpenAI 把重心放在‘科學、數學基準測試、前沿數學、程式設計競賽’上,但這似乎並不匹配典型的 ChatGPT 使用者”,他指出,“大多數 ChatGPT 使用者問的可能只是一些非常簡單的問題,比如電影評分、日常諮詢,“根本不需要模型思考半個小時”。這種“性能過剩”直接導致了產品層面的挫折。2025年初,當OpenAI試圖將最先進的推理模型轉化為ChatGPT可用的版本時,其性能反而“意外地變差”了。即使後來以“思考模式”等形式嵌入,在近9億周活躍使用者中,也僅有極少數人頻繁使用。更令人尷尬的是,OpenAI內部發現,就連傳統的非推理模型,在整合到ChatGPT產品時,也可能因與“個性化”等功能的衝突而導致性能下降。圖:從左到右依次為OpenAI應用部門CEO菲吉·西莫、CEO奧特曼以及首席研究官馬克· 陳02多線作戰:奧特曼的“帝國野心”與ChatGPT的資源內耗在核心產品面臨使用者體驗鴻溝的同時,奧特曼卻開啟了一場令人眼花繚亂的“多線作戰”。在ChatGPT之外,他同時推進了包括Sora視訊生成、音樂AI、AI網頁瀏覽器、AI智能體、消費級硬體裝置、機器人等一系列雄心勃勃的項目。這些平行推進的新項目,持續分流了原本應集中投入在 ChatGPT 上的關鍵資源。多位 OpenAI 研究人員證實,一些新方向的展開,客觀上削弱了用於提升 ChatGPT 大眾化吸引力的投入強度。結果出現了一個頗具諷刺意味的局面:在外部競爭愈發激烈的同時,OpenAI 最核心的收入引擎,卻在內部資源博弈中逐漸“失血”。即便是負責應用與產品線的首席執行長菲吉·西莫,也不得不坦言,在 OpenAI,“產品本身並不是終點”。這家公司在文化與決策層面,依然深受“研究優先”的基因所主導。這種戰略分散在應對Google的兇猛反撲時顯得尤為危險。Google憑藉其龐大的產品生態(Gmail、Chrome、YouTube等數十億使用者入口),正在將AI能力無縫融入使用者已有的工作流中。 正如分析師所言,使用者轉向Gemini“不僅僅是因為它模型更好,而是發現這種能力已經融入一切”。相比之下,ChatGPT在很大程度上仍是一個需要使用者主動訪問的獨立工具,面臨巨大的使用者習慣遷移成本。OpenAI在圖像生成功能上的搖擺,是內部戰略不協調的縮影。2025年早些時候,公司一度降低了圖像生成的優先順序,直到8月Google發佈引爆流行的Nano Banana圖像生成器後,才倉促重新聚焦。據員工透露,這甚至引發了奧特曼與研究主管馬克·陳之間的分歧。這種“追趕式”反應,暴露了多線作戰導致的決策滯後和被動。03增長悖論:使用者增速放緩與商業變現的競賽OpenAI正面臨一個關鍵的增長拐點。該公司在年初設定了年內達到10億周活躍使用者的宏大目標,但截至12月初,其使用者數“不足9億”,且顯示其使用者增長正在顯著放緩。然而,與使用者增長放緩形成鮮明對比的是,OpenAI在商業化變現方面取得了驚人進展。其年化收入從1月份的60億美元激增至目前的超過190億美元,主要動力來源於個人和企業使用者的訂閱。這一財務表現使其有望實現8月份設定的年底200億美元年化收入的目標,並超越其2025年130億美元的收入預期。基於此,該公司正尋求以7500億美元的估值進行融資,該估值較兩個月前高出50%。圖:在每100名ChatGPT的周活躍使用者中,約有5人付費訂閱其Pro或Plus服務不過,要實現OpenAI為2030年規劃的2000億美元收入願景,該公司必須將周活躍使用者轉化為日活躍使用者,以創造更多變現機會。這包括銷售計畫中的廣告,或從聊天機器人促成的交易中抽成。圖:OpenAI預計2030年收入將達到2000億美元儘管OpenAI發言人稱ChatGPT已佔據全球助手使用量的約70%,並成為蘋果應用程式商店年度下載量最大的免費應用,但其增長模式已顯現出深層矛盾:商業化成功可能以使用者增長放緩為代價。專注於從現有使用者獲取高額訂閱收入的策略,可能正在損害其使用者基礎的進一步擴大。並且,隨著GoogleGemini等競爭對手在使用者規模和生態整合上快速推進,OpenAI若不能有效解決使用者增長停滯的問題,其短期亮眼的財務資料背後,可能隱藏著觸及市場天花板的長遠危機。04競爭圍剿:Google的反擊與生態劣勢關於ChatGPT能否取代Google搜尋,當前的看法與一兩年前的主流預期已形成鮮明對比。當時,無論是OpenAI還是Google的高管都曾相信,ChatGPT能夠有效替代傳統搜尋引擎。然而,此後Google迅速在搜尋結果頂部整合了AI生成的答案摘要。據該公司2023年10月報告,這一功能正在推動“有意義”的搜尋量增長和收入提升,因為“使用者逐漸意識到,Google能夠解答更多類型的問題”。Google在其他方面的反擊也足夠精準和致命。2025年,其Gemini實現了快速增長:月活使用者從7月的4.5億增至6.5億,網站存取量單月增長14.3%,而ChatGPT同期訪問量卻連續兩月下降。更關鍵的是,Gemini的平均訪問時長自9月起已超越ChatGPT。Google的成功不僅源於模型性能。其Nano Banana Pro圖像生成器因能生成“可讀且上下文相符的文字”而風靡社交網路,而Gemini 3在複雜商業問題、寫作和編碼上的表現贏得了廣泛讚譽。分析師指出,使用者轉向Gemini“不僅僅是因為模型更好,而是發現這種能力已經融入一切”。圖:Google模型Nano Banana生成的圖片相比之下,OpenAI的生態劣勢明顯。前員工警告,如果Google在原始性能上實現超越,甚至免費提供Gemini,可能同時扼殺OpenAI的API和消費者訂閱業務。OpenAI雖然通過迪士尼合作和聘請蘋果前設計主管喬尼·艾維來建構生態,但硬體裝置“兩年內”才能面市,時間窗口正在縮小。05下一次“紅色警報”或撞上蘋果面對危機,奧特曼在12月拉響了“紅色程式碼”警報。他明確要求將資源重新集中到ChatGPT及其推理能力等核心基礎之上,並推遲了廣告、擴展電商等短期盈利項目。他希望在明年1月底通過一次重大產品更新來扭轉局面。與此同時,OpenAI還迅速推出了一系列應對措施:發佈GPT-5.2(內部代號Garlic),重新奪回多項AI模型性能基準榜首推出新圖像生成模型,回應GoogleNano Banana的競爭回退模型路由系統,讓免費使用者默認使用更快的GPT-5.2 Instant然而,這些措施暴露了更深層的問題。模型路由系統僅運行四個月就被撤回,因為它將免費使用者使用推理模型的比例從不到1%提升至7%,顯著增加了成本,卻因響應慢“對日活指標產生負面影響”。這再次證明,純粹的技術升級未必帶來產品成功。事實上,這並非OpenAI首次拉響“紅色程式碼”警報。首席研究官馬克·陳透露,該公司曾多次使用這一機制,但此次持續時間八周,是“比以往更長”的緊急狀態。此前,該機制曾被用於應對從DeepSeek到Anthropic發佈Claude等競爭威脅。然而,奧特曼的雄心意味著,未來公司可能還將面臨更多需要拉響警報的時刻。當前為期八周的“紅色程式碼”聚焦於應對Google的競爭,但這可能只是更大規模產業衝突的前奏。在鞏固軟體與模型優勢的同時,奧特曼已開始佈局一個更為宏大的硬體戰略,這預示著OpenAI可能與另一個消費電子巨頭蘋果發生直接碰撞。奧特曼對硬體裝置在AI普及中的關鍵作用深信不疑。他公開設定了一個極具顛覆性的目標:開發一款OpenAI裝置,以取代智慧型手機成為人們隨身攜帶的新標準。為實現這一願景,今年5月,他聘請了前蘋果設計靈魂人物喬尼·艾維,並收購了其初創公司,旨在共同打造新一代AI硬體。可以預見,正如Google在軟體層面對OpenAI發起猛烈反擊,蘋果也絕不會在它視為核心的硬體領域坐視挑戰者的崛起。這場即將到來的硬體之爭,將不僅是產品功能的比拚,更是關於下一代人機互動範式的話語權爭奪。06未來迷局:一場尚未結束的生存戰除了技術和產品性能外,OpenAI還面臨著其他方面的挑戰:在財務方面,儘管OpenAI預計其年化收入超過190億美元,但公司正“每年燒掉數十億美元現金”以支付驚人的計算成本。其規劃的1.4兆美元基礎設施投入更是天文數字,迫切需要ChatGPT創造更大、更穩定的現金流。在生態領域,與Google、微軟、蘋果等擁有成熟軟硬體生態的巨頭相比,OpenAI本質上仍是一家“模型公司”。它正試圖通過與迪士尼合作、聘請蘋果前設計主管開發硬體來建構生態,但這需要時間,而競爭對手不會等待。在利潤豐厚的企業客戶市場,OpenAI 似乎也失去了更多市場份額,根據Menlo Ventures近期的一份報告,其份額已降至27%,而Gemini則上升至21%,Anthropic以 40%的份額領先。復盤OpenAI的戰略,其癥結在於:在憑藉技術閃電戰取得先發優勢後,未能將技術優勢高效、專注地轉化為可持續的產品優勢和使用者體驗護城河。 奧特曼同時追逐AGI、硬體夢想和多元產品生態,導致公司在關鍵戰役上兵力分散。而追求極致的“推理”性能,又與大眾市場對“即時、可靠、易用”的核心需求產生了錯配,陷入了“性能過剩”的陷阱。“紅色程式碼”是一次緊急止血和戰略回呼,但ChatGPT的泥潭之路尚未走完。OpenAI需要回答的根本問題是:它究竟是一家以AGI研究為終極使命的實驗室,還是一家以贏得AI產品市場為目標的公司?這道題的答案,將決定它是否能穿越巨頭圍剿的硝煙,守住自己開創的時代。正如矽谷歷史的教訓所昭示的,創新者與老牌巨頭的戰爭,往往贏家通吃,而輸家則只能成為史書中的一個腳註。OpenAI正站在這樣一個決定命運的岔路口。 (騰訊科技)
Google DeepMind 通用機器人路線圖:VLM → VLA + Agent,“能幹活”的機器人跑起來了
Google DeepMind 的機器人團隊強調,他們做的不是預先編好動作、只會後空翻表演的機器人,而是面向現實世界的 開放式通用機器人。這類機器人需要能夠 理解人類自然語言指令,並且可以 靈活組合執行幾乎不限種類的任務,而不是只會重複固定指令碼。來源:AI工業(採用 AI 工具整理)相比四年前,實驗室形態也發生了明顯變化:依託 更加魯棒的視覺主幹網路(visual backbone),模型對光照、背景、雜亂環境的敏感度大幅下降,視覺泛化問題被解決了很大一部分,不再需要用隱私屏去“淨化”場景。來源:AI工業(採用 AI 工具整理)最近幾年的核心進展,是把機器人系統 直接建構在大模型之上。團隊使用大規模 視覺–語言模型(VLM)作為通用世界知識的底座,在此基礎上疊加控制能力,建構出視覺–語言–動作模型(VLA/VALA)。在這樣的模型中,機器人在世界中的 物理動作也被視為一種序列 token,與視覺 token 和語言 token 放在同一序列中建模。這使得模型能夠在統一框架下處理“看到了什麼、理解成什麼、接下來該做什麼動作”,從而在 新場景、新物體、新指令上表現出更強的動作泛化(action generalization)能力。來源:AI工業(採用 AI 工具整理)在任務層面,系統已經從早期只會做“拿起、放下、拉開拉鏈”等短視野任務,邁向可以完成“行李打包、垃圾整理”等 長視野任務。通過在 VLA 上方加入一個 Agent 層,系統可以把很多短動作 編排成完整的長鏈條行為。例如“幫使用者打包去倫敦的行李”時,Agent 會先 查詢當地天氣,再 推理需要準備那些物品,然後呼叫 VLA 驅動機器人執行具體收納,形成 “上層推理規劃 + 底層物理執行” 的分層架構。在Gemini 1.5中,團隊又加入了 “思考(thinking)元件”:模型在執行動作之前,會 先顯式輸出自己對即將執行動作的“想法”和推理過程,然後才真正下發動作指令。本質上,這是把語言模型中的 鏈式思考(Chain-of-Thought)機制遷移到機器人控制上。實驗結果顯示,顯式輸出“思考過程”可以顯著提升機器人在新任務上的泛化能力和成功率,同時也大幅提升了系統的 可解釋性。代表性案例:Aloha 午餐盒、桌面操作與衣物分揀來源:AI工業(採用 AI 工具整理)在具體實驗中,團隊用 Aloha 機器人演示了一個高難度的 “午餐盒打包”長視野任務。機器人幾乎 完全依賴視覺伺服(visual servoing),以 毫米級精度抓住自封袋的一小段邊緣,把面包準確塞進狹窄空間,在出錯時根據視覺反饋不斷調整和重試。支撐這些端到端策略的資料主要來自遠端操作(tele-operation),研究人員以第一人稱視角“軀體化”地操控機器人完成任務。機器人則從這些 人類演示資料 中學習“什麼算做對”,最終得到真正端到端的視覺–動作控制策略。他們還展示了結合 語言控制與通用桌面操作 的場景:桌面上有不同顏色的積木和托盤,上面疊加了Gemini 語言互動層,使用者可以直接說出指令,機器人一邊執行一邊用語言反饋自己的動作。更關鍵的是,場景中加入了 完全未見過的新物體(例如剛買來的梨形小容器、減壓球),系統依然可以理解諸如“打開綠色梨形容器,把粉色軟團放進去,再蓋上”的複雜指令,展現出對 新物體、新組合的開放式泛化能力。在另一個衣物分揀的人形機器人示例中,模型在每個時間步同時輸出 “思考文字 + 接下來要做的動作”,將 思考與行動統一在一個端到端閉環模型中,既提升了表現,也增強了 可偵錯性和可解釋性。技術路線已成型,瓶頸轉向物理互動資料來源:AI工業(採用 AI 工具整理)團隊整體的判斷是:儘管當前機器人仍然 偏慢、動作有些笨拙,成功率也並非完美,但與幾年前相比,已經出現了“質變級”的進步。現在的系統能夠 理解語義、形成有上下文的場景理解,並對複雜的物理任務進行分解與推理。他們認為目前的很多成果,已經是在搭建 未來通用家用機器人的基礎模組,而不是將來會被完全推翻的臨時方案。在這種情況下,真正的核心瓶頸,已經從“模型結構設計”轉移到了“資料匱乏”:機器人要學會通用操作能力,需要海量的 真實世界物理互動資料,而這類資料的規模遠遠比不上網際網路的文字和圖像。未來一個重要方向,是充分利用人類在網際網路上發佈的 大量手工操作視訊,從這些人類示範中大規模學習,從而緩解實體機器人採集資料成本高、速度慢的問題。總體來看,通用機器人操作仍然是一個高度非結構化、開放式的難題,但在團隊看來,如果能跨過“物理互動資料”的門檻,當前這些“幫忙疊衣服、打包午餐”的演示,很可能就是一場真正“機器人革命”的前夜。 (AI工業)
美國太空算力戰略部署研究報告
核心觀點與結論建構 “政策 - 商業 - 科研” 三位一體閉環體系:以 “立法 - 研發 - 測試 - 落地 - 監管” 全周期推進,商務部簡化許可審批、NASA 提供技術驗證、科技巨頭主導商業化,形成全球獨有的規模化部署模式。突破太空極端環境適配技術瓶頸:抗輻射晶片(輝達 H100 輻射加固)、相變散熱等技術保障硬體在軌穩定,SpaceX 星艦全復用發射將部署成本降至 200 萬美元 / 噸,重塑太空算力性價比標竿。開創 “天感天算” 資料處理新範式:星載 AI 處理使資料傳輸量減少 90%,應急響應從小時級縮至秒級,破解傳統 “天感地算” 頻寬瓶頸,滿足災害預警、戰場偵察等即時需求。打造天地一體化混合雲算力網路:太空算力與地面雲動態調度,星間雷射鏈路實現 100Gbps 高速傳輸,2030 年將支撐全球 30% AI 推理任務,重構全球算力供給格局。形成 “軍事 - 商業 - 地月” 三級應用生態:2030 年軍事場景算力覆蓋率超 50%,2027 年推出按分鐘計費的太空公共雲,月球資料中心落地支撐地月經濟圈,實現多場景價值變現。技術外溢催生跨行業革命:星間雷射鏈路助力 6G 無縫覆蓋,高效熱控技術推動地面資料中心 PUE 降至 1.05 以下,帶動通訊、AI、能源等領域兆級增量,2030 年為美 GDP 新增超 5000 億美元。主導全球太空算力規則制定:從硬體介面到安全規範形成全套標準,通過 “商業太空對話” 聯動澳、加、德、日等盟友,憑藉 “規則 + 技術 + 市場” 三重優勢掌控全球科技競爭話語權。開創可持續太空經濟新模式:通過規模化降本(星艦發射)與算力服務變現,推動商業航天從 “項目制” 轉向 “平台服務制”,2035 年在軌資料中心市場規模將達 390 億美元。(鼎帷諮詢)
儲存大廠獲蘋果大單!霸佔70%!
以挑剔著稱的蘋果公司,業界傳認可了三星的一款DRAM產品,將佔三星出貨量的60-70%。 三星半導體的旗艦產品通常被稱為LPDDR(雙倍資料速率),這是一種通用DRAM。 韓國經濟日報報導,三星以一款「『無名英雄』產品,橫掃蘋果供應鏈」,已獲得LPDDR5X的最大量訂單,該晶片用於最新的iPhone 17,三星也因此成為「領先供應商」。業內人士估計,三星將大幅提升其市場佔額,預計將佔iPhone 17出貨量的60%至70%。 先前,三星電子和SK海力士在iPhone機型上的供應量一直被認為相近。 iPhone採用三家記憶體公司、SK海力士和美光LPDDR記憶體。據信,蘋果決定增加從三星的採購量,是因為它認為三星對於確保其每年生產的2.3億部iPhone所需的LPDDR記憶體供應至關重要。尤其是在SK海力士和美光近期將產能集中於高頻寬記憶體(HBM)的情況下,蘋果現在能夠儘可能地從三星獲得供應,而三星在通用DRAM市場佔據了相當大的佔額。 蘋果也向三星訂購了大量用於明年9月發佈的iPhone 18的記憶體。美媒wccftech則報導指出,蘋果雖然是市值上兆美元的巨頭,但也無法倖免於DRAM短缺的影響。 由於其與三星和SK海力士的長期合作協議預計將於明年初到期,該公司必須迅速採取行動以避免價格上漲。最新報導指出,蘋果已與三星達成合作,並在此過程中使三星成為其最大的DRAM供應商,三星提供的DRAM將佔其總出貨量的60%至70%,這些DRAM不僅用於現有的iPhone 17系列,還將用於明年的iPhone 18系列。iPhone 18系列將於明年第3季發佈,據傳將配備六通道LPDDR5X儲存器 以提升頻寬和AI效能。 在這種情況下,三星似乎是唯一能夠同時滿足其最重要客戶需求,並保證供貨量和質量的廠商。 該報告還指出,蘋果對DRAM的「規格」極為嚴格。此外,A19、A19 Pro以及明年的A20和A20 Pro等晶片組都無法承受瞬時電壓尖峰。 三星的12GB LPDDR5X 晶片厚度僅0.65毫米,是移動裝置中最薄的元件之一。 憑藉上述優勢,其熱阻提升了21.2%,功耗降低25%,蘋果毫不猶豫地選擇了三星作為替代供應商。 (大話晶片)
吳恩達最新發聲:大模型通往AGI還得好幾年,做好長期苦戰準備
吳恩達(Andrew Ng)剛剛發表了一篇關於LLM現狀與未來的最新觀點他直言:儘管LLM令人驚嘆,但目前提升其知識水平的過程,其實比大眾認知的要零碎得多針對目前業界的兩種極端聲音,吳恩達給出了明確態度:既不要輕信LLM再過幾年就是通往AGI之路的炒作,也不要陷入LLM不過是演示品的錯誤反向炒作相反,我們需要對通往更智能模型的路徑有一個更精確的理解以下是吳恩達的核心觀點梳理LLM確實通用,但還不夠通用吳恩達首先肯定了LLM作為一種比前代技術更通用的智能形式。第一波LLM技術通過在公共網路上訓練,獲取了涵蓋廣泛主題的資訊。這使得它們的知識廣度遠超早期那些只能執行單一任務(如預測房價、下圍棋或國際象棋)的演算法。然而,它們的通用性仍遠不及人類例如,即便在預訓練階段閱遍了整個公網內容,LLM在適應特定寫作風格,或者可靠地使用簡單網站方面,依然表現掙扎——而這些通常是人類編輯或普通人能輕鬆做到的。榨乾公網資料後,全是“苦力活”在利用了幾乎所有開放網路資訊後,進步變得愈發困難吳恩達指出,如果一家前沿實驗室現在想要LLM在特定任務上表現出色——比如使用特定程式語言寫程式碼,或者在醫療、金融等利基領域輸出合理內容——研究人員必須經歷一個繁瑣且費力的過程:尋找或生成該領域的大量資料;對資料進行預處理(清洗低品質文字、去重、改寫等);將這些處理好的知識喂給LLM。甚至,為了讓模型執行某些任務(如使用網路瀏覽器),開發人員可能需要經歷更繁瑣的過程:建立大量的RL Gyms(強化學習模擬環境),讓演算法在狹窄的任務集中反覆練習相比人類,模型還太“笨”吳恩達強調,一個典型的普通人,即便閱讀的文字量遠少於前沿模型,或者在電腦操作環境中的練習量遠少於模型,卻能泛化到更廣泛的任務中。人類之所以能做到這一點,可能得益於以下機制:從反饋中持續學習的能力;對非文字輸入擁有更優越的表徵能力(吳恩達直言:LLM對圖像的Token化處理,在他看來目前仍像是一種駭客手段/權宜之計)以及許多我們尚未理解的機制結論:做好長期苦戰的準備如今推動前沿模型的發展,需要做出大量的人工決策,並採用以資料為中心的方法來工程化訓練資料吳恩達認為,未來的突破或許能讓我們不再以這種零碎拼湊的方式推進LLM。但即便沒有突破,這種持續的零碎改進,加上模型有限的泛化能力和湧現行為,仍將繼續推動技術的快速進步他在最後總結道:無論那種情況,我們都應該計畫好迎接未來多年的艱苦工作在這條建構更智能模型的道路上,前方仍有一段漫長、艱難——但也充滿樂趣的跋涉 (AI寒武紀)
李飛飛最新訪談:這,才是下一個10年
筆記君說:在AI浪潮席捲各行各業的今天,每一位企業家和創業者都面臨同一個問題:未來的機會究竟在那裡?被譽為“AI教母”的李飛飛,在前兩天的一次深度對話中,給出了她的答案。以下是李飛飛這次訪談中的自述部分,希望她的這些話,對你有所啟發。一、“空間智能”是AGI的一把關鍵鑰匙1.世界遠不止語言那麼簡單我先說一下我的信念:在技術上,確實有一些相通的概念,所以我也能理解有些人說“語言即世界”。宏觀地來說,我堅信這個世界遠不止語言那麼簡單。如果我們說的語言概念,指的是那種離散的、本質上更偏向“一維”的資訊——即便它能表達多維的內容,語言本身的呈現形式還是比較一維的。但這個世界其實要豐滿得多。我一直強調,空間智能包含諸多特性,比如物理屬性這些,都是超越語言範疇的。而且不管是人類的行為,還是大自然的運轉,很多東西既沒法用語言完全表述清楚,也不可能單靠語言就實現所有想做的事。我們每天睜開眼,從生存、工作、創造,到感受、感知,再到人與人之間豐滿的情感,這些日常裡的種種,從來都不是只靠語言就能完成的。當然“語言即世界”這樣的話確實挺好聽,聽起來也沒錯,因為它是非常籠統的一句話。當你一句話很籠統的時候,它可能錯不了。但從技術層面看,現在數位化是必然趨勢:視覺模型、空間智能、機器人模型,本質上都會走向數位化。可要是把數字和語言完全畫等號、當成一回事,那這個概念就變味了。如果連數字都能被叫做“語言”,那相當於啥都能往“語言”裡套,這就沒什麼好爭論的了。在我看來,資訊遠不止語言這一種,還有空間資訊,它和語言一樣美妙、一樣重要。2.“空間智能”到了爆發前夜現在AI大環境裡,大家對AI的期待確實有點太激進了。但我可以告訴你,我選擇創業的核心原因,就是覺得時間點到了。畢竟創業和搞科研不一樣,創業得緊密結合市場、尊重市場規律。但就像很多比我優秀的企業家說的,創業最關鍵的是踩準時間點——不能太早,市場和技術都沒成熟;也不能太晚,否則就沒了機會。空間智能技術在World Labs(中文名:空間智能)剛成立時,確實還早了點,但也沒早到需要等五六年、十年的程度。我判斷未來一兩年,它會迎來爆發式增長。你看現在視訊生成技術的飛速發展,再到我們做的World Models,我堅信這類技術在一兩年內還會有質的飛躍,市場應用的可能性也越來越清晰。我沒法簡單定義現在發展的速度是快還是慢,但能肯定的是,現在正是做空間智能的好時機。我們現在做的“世界生成”(world generation)模型,真的特別令人激動。它的應用場景太廣泛了——從數字創意、遊戲開發、影視製作、設計領域、建築行業,到VR、XR、AR技術,再到機器人模擬,每一個大領域裡又能細分出無數小場景。而這些場景,其實都藏著對三維空間的強烈訴求。生成式AI有個很特別的價值:它能降低原本高難度事情的門檻,進而打開很多你意想不到的新市場。生成三維空間就是件超難的事——這個世界上沒多少人能做到,而且用到的Blender、Unity這類工具,操作起來特別繁瑣。我自己試過,頭都大了。其實很多創作者腦子裡裝滿了好想法,只是被工具卡住了,而非缺乏創意。而AI既能給現有創作者賦能,還能讓很多原本覺得“這事跟自己沒關係”的人,發現新可能。就像我,以前根本不會碰Blender、Unity這類軟體,覺得又麻煩又費時間,但現在AI能賦予我這種能力,我肯定願意用——它能帶來太多新靈感、新機會了。所以我覺得三維世界模型特別讓人興奮:它原本是件對普通人來說難度極高的事,而AI能降低這項能力的使用門檻,這本身就是打開市場的絕佳機會。在我看來,沒有空間智能,沒有三維世界的生成式模型,就談不上AGI(通用人工智慧)。AGI就像一扇門,上面掛著好多把鎖,需要不同的鑰匙去開啟。我始終認為空間智能是其中一把關鍵鑰匙——不過這扇門並非非開即關,而是被一點點推開的。其實我一直不太糾結AI和AGI的區別。因為兩者的夢想是相近的,都是源於一種“科學”的好奇心:機器能不能思考?能不能自主完成事情?這是AI最初的夢想,AGI的目標似乎也沒偏離太多。不管叫什麼,這個夢想都得一步步實現,我們每往前走一步,就離它更近一點。而空間智能,必然是通往這個夢想的重要一環。不管是賦能人類的創造力(從遊戲、設計到工業應用),還是給機器人賦能,亦或是元宇宙、AR/VR的內容生成與落地,都離不開空間智能。3.演算法與資料,都是AI的核心工程、數學的發展路徑和進化的路徑是不一樣的,這就像蘋果和橘子的比較,它們的進化都是很慢的。進化的迭代速度遠慢於演算法迭代,而且碳基與矽基的運算邏輯也大不相同,所以從時間維度來看,兩者沒法放在一起比。但即便如此,進化依然給了我們很多啟發和靈感。這就說到資料的重要性了。當初我們實驗室提出“資料”相關概念,其實也借鑑了不少進化的思路:漫長的進化歲月,本質上就是一段巨量資料訓練的過程;但到了數字時代,我們不用再等幾十億年去收集資料,而是可以大規模、快速地積累資料。和大自然通過進化完成的“資料積累”比起來,我們現在一次能處理、看到的資料,可能相當於進化幾千萬年才沉澱下來的量。相信自己深思熟慮後的假設,也不是什麼怪事吧?走在科學路上,對於那些經過深度思考的假設,你總得有所堅信。但作為科研人,也得清楚有些假設註定是錯的——我當然也有過很多失敗的假設。而我現在堅信的這個假設,是琢磨了很久才得出的:它在數學上是歸納推理的邏輯。我整個博士階段都在做模型、搞演算法,積累了不少領悟,才慢慢意識到這一點。說白了,AI到今天在數學層面的核心,就是“泛化”(generalization)——本質上就這一件事。而泛化怎麼實現?核心就兩點:演算法和資料,而且兩者息息相關。演算法太複雜但資料不足,會過擬合(模型在訓練資料上表現優異,但在面對新資料時性能顯著下降,無法有效泛化的情況);資料太多但演算法不夠好,同樣會過擬合——這裡面藏著明確的數學邏輯。我算是電腦視覺領域早期做機器學習的那批博士生,很幸運的是,我的博士研究剛好趕上電腦視覺的轉折點——我們大量運用機器學習的理念,這讓我對“泛化”的理解更深刻(當然,不一定只有我理解得深)。但我那時候就明確看到了資料的重要性,所以一直堅持了下來。這又回到了好奇心的話題——那個求證假設的過程其實挺有意思的,全程充滿激情,就像一路打怪升級。只要沒被“妖怪”打敗,就接著往下打唄。模型和資料的關係,本質是螺旋式上升的。當年,ImageNet搭建起電腦視覺領域最大的資料庫,直接推動了電腦視覺的蓬勃發展;後來網際網路催生了海量自然語言資料,大語言模型也跟著迎來爆發;再看現在的視訊模型發展得這麼快,核心也是有足量視訊資料支撐;自動駕駛能飛速進步,也離不開頭部公司積累的海量路況、行駛資料。現在看似“又回到了資料和演算法”,其實根本算不上“回歸”——它們從來就沒離開過AI的核心。我有時候覺得挺有意思:就算AI發展到今天,大家還是更看重演算法。但真正做AI的人,不管是創業者還是大公司從業者,心裡都清楚:資料不是說比演算法更重要,至少是同等重要。演算法聽著更“酷炫”,資料的價值反而容易被忽視。但實際上,資料本身就是一門科學。4.空間智能,賦能於“機器人”的發展① 自動駕駛,是簡化版的世界模型自動駕駛汽車其實就是機器人——它是人類最早量產的機器人,但其實挺侷限的。你想啊,它就是個方盒子,基本只在二維路面上活動,只要別碰到別的東西,不管是車、行人還是路邊設施。但我們未來要做的三維機器人不一樣:它得在三維世界裡主動“碰”各種東西,幫我們洗碗、做飯、疊衣服。這麼一對比,就知道自動駕駛汽車其實還是挺簡單的機器人。所以對應的,它的世界模型也更簡單——畢竟要做的事兒就那麼點。當然我不是說自動駕駛不厲害,特斯拉、Waymo(全球自動駕駛標竿,前身為 2009 年Google自動駕駛項目)這些公司都很了不起。但從科學和宏觀的角度看世界模型與機器人技術,這頂多隻是個開始,接下來要做的事情複雜多了。我無法斷言特斯拉有沒有(世界模型)相關佈局。但至少不會是一個強生成性的模型,畢竟業務場景本身不需要這件事。但機器人不一樣,機器人訓練離不開生成式模型——你不可能收集到足夠多的真實場景資料。而且我們做的事情都和創意、設計相關,這些本身就需要生成能力,“生成”本身就是核心應用場景之一。② 機器人的三維能力,還在早期階段現在矽谷的機器人領域大火,我也特別喜歡這個領域,也一直很看好機器人的前景。但同時,我也覺得要保持冷靜:機器人研究其實還處在早期階段。首先,最核心的問題是缺資料。汽車行業發展了幾十年,還有無數人在開車過程中持續蒐集資料;可機器人目前基本沒有商業化應用場景,尤其是日常消費級場景,資料自然難收集。而生成式AI的出現,給機器人領域帶來了一條有意思又有前景的出路。像視訊生成這類技術,不僅提供了豐富的訓練想像空間,還能用於擬態——比如我們正在做的機器人模擬,就特別有前景;甚至在推理階段,還能用視訊模型輔助線上做規劃。可以說,正是機器人周邊領域(比如生成式AI)的快速發展,在反過來帶動機器人技術進步,這一點確實讓人激動。但機器人要真正實現商業化,還有一段路要走,尤其是日常消費級機器人。不過工業機器人早就落地了,畢竟它的應用場景相對單一,容易約束環境,而且也積累了不少資料。自動化駕駛和機器人兩者之間,既有可比性,也有不可比之處。自動駕駛從概唸到商業化,走了近20年:Google2006年就成立了小型自動駕駛研發團隊,直到2024年Waymo才正式上路。汽車行業的供應鏈、OEM體系、客戶場景都非常成熟,這一點讓自動駕駛的商業化比機器人快得多;但當年AI技術不成熟,自動駕駛在AI這條路上走了很久,而現在AI的發展速度肯定會更快。可除了工業機器人(或者說場景單一、易約束的工業機器人),目前並沒有像汽車那樣成熟的機器人應用場景。所以機器人商業化之路會比20年快,還是更慢,真的很難說。但我相信,AI層面的進展會比當年自動駕駛時期快一些;可反過來,機器人面臨的問題也更複雜——它要應對的是完整的三維世界。AI已經能做到非常出色,可要說今天的空間智能,能達到人類睜開眼就有的那種對三維世界的深層理解,還差得遠。比如物體間的物理關係、材料屬性、物理特性,這些我們人類能直觀感知的豐富資訊,AI還沒法完全掌握;更別說對社交資訊、人與人之間情感的理解,這些都屬於視覺理解的範疇,而我還沒提語言層面的複雜認知。人類本身就是極其複雜的存在。所以從進化和能力來看,AI在某些方面已經追上甚至超越人類,但在很多核心維度上,還遠遠不及。而且我作為深耕AI和科技領域多年的人,對空間智能的信仰,絕不是盲目崇拜。它源於對技術的深刻理解,源於這麼多年在這個領域的深耕,也源於我和同事們看到的技術機會與發展方向。創業確實需要情懷,但對科技趨勢的判斷,更需要紮實的邏輯和科學的判斷。二、AI的未來:人類有責任讓其“向善”1.機會,並非贏家通吃綜合來看,資料、算力、人才的整合能力很關鍵——現在能做好這些資源整合的公司,存活機率和勝率會更高。但我覺得,不能只盯著這些顯性因素。畢竟顯性因素一眼就能看到,也容易被大家熱議追捧,但光靠這些遠遠不夠。舉個簡單的例子,在AI coding領域,微軟應該是第一個下場的,推出了Copilot(微軟推出的跨平台生成式 AI 助手)。它可謂佔盡了天時地利人和:手握所有資源、坐擁現成場景,連GitHub(微軟旗下的開發者平台)都是自己的。可微軟最終沒能成為行業標竿,反倒是矽谷現在火起來的Cursor、Claude Code這些小公司,在巨頭圍剿下實現了突圍。這就說明,光有顯性因素根本不夠。如果大家都只盯著這些表面資源下判斷,很容易出現偏差。人類歷史上,從來沒有那個時代是大公司獨霸天下的——即便每個時代的大公司都手握超強的資源整合能力。所以這裡邊還藏著更關鍵的東西:創造力、機遇、執行力,還有對時間點的把握,這些都是決定成敗的核心變數。再加上,AI本身就是一門橫向技術,能催生出無數應用級機會,大公司根本做不完。這些機會,恰恰給了小公司足夠的空間:把某個應用做到極致,慢慢撕開市場缺口,完全有可能實現彎道超車。2.AI只是工具“AI是工具”,這其實是常識。工具本就是雙刃劍:人類史上所有工具,小到最初的火、石斧,大到核彈、生物技術,再到如今的AI,無一例外。我當然也認為,工具的使用必須向善,但同時也要防範它被誤用,不管是有意還是無意。所以我覺得,兩種極端都不理性:只追求發展而無視安全與向善,必然是災難;但天天空談倫理向善而停滯發展,也會錯失技術帶來的諸多福祉。就像做父母,你會教孩子用火做飯吧?既要告訴他們火能做飯的好處,也得讓他們知道用火的危險,這是再簡單不過的道理。AI既是權力的工具,也是向善的工具,但它永遠只是工具。在我看來,這工具會越來越強大,但在它真正不可控之前,它始終屬於人類——人類有責任讓它保持可控。但就像所有工具一樣,我們從來不會指望工具自己明白該做什麼:向善與否,本質是人類的責任。所以對AI的控制與引導,是法律、制度、教育和整個社會的共同責任。不同社會、不同個體或許有差異,但這份責任終究在人類身上。3.教育體系,到了徹底變革的時刻AI時代迫切需要我們更新教育理念和方式——既要讓孩子們學會用這個工具,借助它賦能創造力、助力學習;也要讓他們清楚工具可能存在的問題與風險。而且這絕不僅僅是教育孩子的事。我們總覺得該教育孩子,殊不知最需要被教育的其實是成年人自己。所以,自我教育、面向公眾的科普、給政策與法律制定者提供充足資訊和學習機會,這些都至關重要。說到底,對AI的發展與治理,本質上就是我們人類自身的學習、發展與治理——核心還是人的問題。在這個AI成為具備智力能力的工具的時代,它帶給我們的最大啟發,或許是讓我們更好地瞭解自己、治理自己——這裡的“自己”,既包括每個個體,也包括人類群體。現在關於AI的討論沸沸揚揚,大家都熱衷於談論這項技術。但說到底,不管是個體人性還是群體人性,欠缺的或許還是那份自省吧。對個體來說,時代正在劇變,再做“鴕鳥”逃避現實絕非明智之舉。這種變化必然帶來工作形態的重塑。任何重大科技革命都會引發職業變遷,有時是短暫陣痛、軟著陸,有時可能伴隨社會動盪。作為個體,還是要保持好奇心——對生命、對世界的好奇。那怕這份好奇心,在成年人的世界裡源於對未知的恐慌也沒關係,至少它能成為驅動你主動學習的動力。這一點,值得每個個體自省。而從群體層面來看,AI時代最急需革新的,是我們的教育體系。不管是國內的K-12教育,還是美國這邊雖不唯應試但仍包含應試、仍側重“知識填充”的教學模式,都亟待更新。AI正在不斷證明,很多事情機器能做得更好。如果還讓人類花十幾年、幾十年時間,去重複大半機器可替代的工作,無疑是對人類潛能的浪費。所以我特別想呼籲:所有關注教育、能影響教育政策以及踐行教育的人,都要牢牢抓住這個時代機遇。我們的教育方法論,已經100多年沒有本質變化了。我最大的期待是,100年後歷史學家回望21世紀上半葉時,會看到人類完成了一次真正的教育革命。借助AI賦能教育者與學生,把節約下來的大量時間和精力,讓學生們在老師的引導以及自我探索中,去積累那些AI永遠做不到的認知與核心能力。人類的潛力其實無比巨大,每個個體都是如此。我們的大腦遠未被充分開發,不管是作為個體還是群體,都還沒發揮出全部潛能。你只要看看人與人之間的能力差異,就能感受到這份潛力有多驚人:有些人展現出的能力,簡直像“超人”一樣。這說明,這種極致的潛能本就藏在人性之中,只是大多數人都沒能把它激發出來。而AI這個工具的出現,甚至它對人類工作帶來的衝擊,恰恰給了我們一個契機——重新審視並重構整個教育體系。我覺得真正的教育變革,應該打破工科與文科的固有界限:畢竟AI能讓所有人都學會程式設計,那這些人還能簡單歸為工科生嗎?AI也能幫更多人更好地感知美、讀書、作詩,文科的邊界也被打破了。所以,以前的分科邏輯完全可以改變——AI給了我們打破這種侷限的機會。但說到底,關鍵還是人怎麼使用這個工具。我最擔心的,是人類會放棄自我:覺得“AI這麼聰明,有沒有我都一樣”,這種想法太可怕了。“躺平”這個詞很形象,但背後的心態真的危險。人類有太多未被發掘的潛力,有太多創造世界的可能,有太多讓這個世界變得更美好的機會。而AI,終究只是一個工具而已。如果我們放棄了自身的能動性(agency),就等於放棄了改變自己、改變世界的好奇心與動力。說實話,我真的不懂什麼叫“AI就是世界”。就像有人說“一花一世界”,我能理解那份意境,但“AI就是世界”的說法,我實在摸不透它的核心含義。其實“AI只是工具”這句話的背後,本質是我們如何看待AI與人的關係——把AI當工具,意味著人類始終把自身放在更重要的位置,意味著我們更該關注自我的成長與價值。說到底,“AI是工具”這句話裡,藏著我對人的信仰——我信仰人性的潛力,信仰人類社會的韌性,我信仰的是人,而不是AI。尾聲李飛飛,是對技術趨勢的清醒判斷者。AI,是我們這一代人此生最大的機會。她說,AI時代,人類迎來一次教育的革命,從知識性教育到技能型教育,到認知結構,到人本身的教育,都可以改變。正是在這個時代背景下,筆記俠推出了中國首個面向企業家的AI時代PPE(政治、經濟、哲學)底層認知課程。以AI時代為背景,通過人工智慧科學、AI文明、經濟學、政治學、哲學、智能商業等視角,從底層把握AI時代,激發創業者們在AI時代的潛力,培養能駕馭AI範式轉移的決策者。如何擁抱AI時代,需要理解那些?要理解技術。人工智慧必然重構人類社會的底層邏輯。成為新人類,是決策者的宿命。要理解商業。當AI成為核心生產要素,企業的價值創作邏輯和增長範式會發生根本性變化。要理解世界。在波譎雲詭的世界中生存發展,決策者需要深刻理解AI時代下國際政治經濟體系運行的規律和趨勢。要理解中國。中國走向現代化的道路,必然建築在中國的文化基因上,理解中國才能穿越宏觀周期,活在中國,贏在中國。要理解自己。活出內心的自由和篤定,不被AI時代外界的震盪所撼動,決策者才有心力成為企業的定海神針。這,就需要回到決策的源頭:AI技術與文明、哲學、政治、經濟,重構我們的底層認知邏輯。我們一起做AI時代保持清醒和篤定的決策者。 (筆記俠)
AI時代,深邃的思考與清晰的表達,才是人類最後的護城河
人工智慧,尤其是大模型的快速普及,正在以前所未有的速度重塑人類社會的分工結構。一個越來越清晰的趨勢正在浮現:執行正在被AI接管,而思考與表達,正在回歸人類本身,並變得愈發稀缺。一、從會做事到想清楚事,能力結構正在發生根本轉變在工業時代與資訊時代的大部分時間裡,人類價值高度依賴執行力。誰更勤奮、誰更熟練、誰更快完成任務,誰就更具競爭力。然而,大模型的出現正在系統性地瓦解這一邏輯。今天,大模型可以寫程式碼、生成文案、整理報告、分析資料,甚至完成大量過去被視為高認知含量的工作。只要目標足夠明確、路徑足夠清晰,執行幾乎可以被無限複製、低成本擴展。這意味著:執行力正在商品化技能本身不再稀缺單純會幹活的價值正在快速下降在這樣的背景下,真正拉開人與人差距的,不再是你能做什麼,而是你能不能想清楚要做什麼。二、你想明白的東西,才能被清晰地表達出來思考與表達從來不是兩件獨立的事情。模糊的表達,本質上源自模糊的思考。一個人如果無法用簡潔、結構化的語言講清楚一個問題,往往不是不會說,而是根本沒有想透。真正的思考,是將複雜問題拆解為清晰的邏輯鏈條,是在不確定性中找到關鍵變數,是在噪音中提煉本質判斷。在AI時代,想明白本身就是一種稀缺能力。因為資訊極度過剩,結論卻極度匱乏;工具觸手可及,判斷卻愈發稀缺。三、你能清晰表達出來的東西,才能交給大模型去幹大模型並不理解意圖,它理解的是指令。而指令的質量,完全取決於表達的清晰度。模糊的目標,只會得到泛泛的結果不完整的約束,只會帶來不可控的輸出缺乏結構的描述,只會放大不確定性因此,一個極其重要卻常被忽視的事實是:大模型並不會削弱表達能力的重要性,反而將其放大到了前所未有的高度。只有當你:能清晰描述問題邊界能明確表達目標與約束能結構化地拆解任務你才真正具備讓AI為你工作的能力。從這個意義上講,表達力正在成為人類與大模型之間最關鍵的介面能力。四、未來的人類角色:負責思考與表達,把執行交給AI當執行成本趨近於零,人類的核心角色將發生遷移:人類負責提出問題人類負責做價值判斷人類負責建構認知框架人類負責表達目標與方向而:推演方案生成內容反覆試錯大規模執行將越來越多地交由大模型完成。這不是人類能力的退化,而是一種能力層級的躍遷。人類從操作者,轉向設計者和判斷者。五、AI時代,真正的競爭發生在思考深度與表達清晰度上在AI高度普及的未來世界裡,真正稀缺的,不是資訊,不是算力,也不是技能本身,而是:能在複雜系統中做出深邃思考的人能將複雜思想清晰表達出來的人能用語言與結構駕馭智能系統的人思考力決定你能看到多遠,表達力決定你能調動多大的能力邊界。當執行可以外包給大模型,人類真正的價值,將回歸到最本質的兩件事上:想清楚,以及說明白。 (壹號講獅)